Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Nina Wietek from the Ahmed lab is investigating fallopian tube tissue to see what we can understand about precancerous mutations in the tissue from which ovarian cancers develops.

Digital render ovarian cancer

High grade serous ovarian cancer (HGSOC) is the most common subtype of ovarian cancer, and is one of the deadliest. Over 80% of these ovarian cancers are detected at an advanced stage, such as stage III or IV, when cancers are much harder to treat. As a result, 10-year survival rates are less than 30% in the UK.

This is despite the fact that HGSOC has a latency period predicted to be between 6.5 and 40 years, whereby a precancerous lesion in the fallopian tube has developed and will go on to become a cancerous tumour. So, despite being present in the body for a long time, current methods are poor at detecting this type of ovarian cancer at an early stage once it has progressed.

This is due in part to a lack of screening techniques for ovarian cancer, such as the very successful screening programmes for other cancers like cervical or colorectal cancer, which have had a considerable impact on patient outcomes over the last decade. Ovarian cancer symptoms are also very non-specific and so make early diagnosis even more challenging, with women often presenting with bloating, abdominal pain, weight loss or weight gain. The precancerous lesions of the fallopian tubes that could develop into serous ovarian cancer are also hard to find due to their small size, and thus are hard to study. There is therefore an urgent need to find new methods of early detection.

Nina Wietek from the Ahmed Lab at the Nuffield Department of Women’s & Reproductive Health is investigating potential avenues for early detection through sequencing tumours and precancerous tissue to explore tumour initiation. To do this Nina is interrogating highly relevant samples obtained directly from patients to gain important insights into tumour development using the power of genomics. Through enhancing our understanding of these early changes, they hope to devise methods of looking for them in order to diagnose ovarian cancer at an early stage, which will have a direct impact on patient survival.

About Nina & the Ahmed lab

Nina Wietek is investigating methods of early detection and prevention of ovarian cancer at the Ahmed Lab. Publications and results from this work is expected later in 2021.

Led by Prof Ahmed Ahmed, the Ovarian Cancer Cell Laboratory in The Weatherall Institute of Molecular Medicine uses cutting-edge innovative technologies to gain deep understanding of mechanistic drivers of ovarian cancer initiation and progression. Find out more about this group here.

Similar Stories

Oxford to assess revolutionary multi-cancer blood test in trial, for future implementation in the NHS

A partnership between the University of Oxford and GRAIL, LLC will evaluate the use of a new, non-invasive, multi-cancer early detection test known as Galleri in suspected cancer patients.

Oxford Cancer Analytics awarded £1.27M to revolutonise lung cancer management

OXcan, an Oxford University spin out, has raised money to apply their machine learning approach to lung cancer early detection

Oxford’s cancer-risk research featured in special edition of PLOS Medicine focussed on advances in early cancer detection

Research from Dr Brian Nicholson and colleagues outlines how routine clinical tests could be widely used to estimate the risk of cancer for people visiting their GPs with unexpected weight loss.