Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Professor Stefan Constantinescu joins Ludwig Oxford to expand his research programme in cancer epigenetics.

Stefan Constantinescu

Oxford's cancer community is delighted to welcome Professor Stefan Constantinescu, a physician scientist and authority on the signalling pathways and molecular mechanisms of blood cancers, especially myeloproliferative neoplasms, a collection of slow growing blood cancers that can progress to acute malignancies. He is a member of the Ludwig Institute for Cancer Research, Professor of Cell Biology at the Université catholique de Louvain, Director of Research (Honorary) at the Fonds National de la Recherche Scientifique (FRS-FNRS), Belgium and President of the Federation of European Academies of Medicine (FEAM). Constantinescu will spend 25% of his time at the Ludwig Oxford Branch and the remainder of the time at his existing Ludwig laboratory in Brussels.

Constantinescu has received many honors for his work, including membership of the Royal Academy of Medicine of Belgium and the Belgian Government prize for basic medical sciences. He is internationally known for his groundbreaking contributions to our understanding of the mutations and mechanisms that drive myeloproliferative disorders. In a fruitful collaboration with William Vainchenker, he discovered that a mutation (V617F) in a signalling enzyme named Janus kinase 2 (JAK2) occurs in most patients with polycythemia vera, in which red blood cells accumulate abnormally. Constantinescu’s subsequent work demonstrated how this mutation causes disease, leading to the development of novel therapies to treat myeloproliferative disorders and the widespread clinical use of genetic tests to detect the mutation.

Constantinescu has also identified and characterised other common mutations in the thrombopoietin receptor that cause these blood disorders. He has further demonstrated that mutated calreticulins –“chaperone” proteins that otherwise help fold other proteins appropriately—can induce myeloproliferative disorders via abnormal activation of the thrombopoietin receptor, identifying a novel oncogenic mechanism. His discoveries have helped transform the field and continue to open new avenues for the development of targeted therapies.

Constantinescu’s Ludwig Oxford lab will focus on a systematic study of signalling and epigenetic regulation during oncogenesis in chronic myeloid cancers and their progression to the severe condition, secondary acute myeloid leukaemia. Ludwig Oxford’s research programme will be enhanced by Constantinescu’s presence, and his own research programme will benefit from Ludwig Oxford’s expertise in cancer epigenetics, represented by the laboratories of Yang Shi, Chunxiao Song, Skirmantas Kriaucionis and Benjamin Schuster-Böckler.

Read more about the new Constantinescu research group here.

Similar Stories

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes

Genetic mapping of tumours reveals how cancers grow

Researchers from the University of Oxford, KTH Royal Institute of Technology, Science for Life Laboratory, and the Karolinska Institutet, Solna, Sweden, have found that individual prostate tumours contain a previously unknown range of genetic variation.

First patient diagnosed earlier using liquid biopsy technology as part of the AI-REAL programme in sub-Saharan Africa

The AI-REAL programme led by Professor Anna Schuh and research teams in Tanzania and Uganda is improving the early detection and outcomes of childhood lymphoma in the region by increasing the speed and precision of diagnosis.