Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new cell communication mechanism that's been identified could have implications for breast cancer and understanding its pathology

Seminal fluid in the male accessory gland is full of elliptical lipid-containing microcarriers (stained green).

The transfer of complex mixtures of signals and nutrients between individuals is a key step in several biologically important events in our lives, such as breastfeeding and sexual intercourse. However, we know relatively little about the ways in which the molecular gifts involved are packaged to ensure their successful delivery to the recipient.

By studying such events during mating in the fruit fly, researchers at the University of Oxford have identified a new communication mechanism in which nutrients and signals are combined in fatty droplets that stably store their bioactive cargos in males, until they are transferred to females when they dissipate within minutes. These specialised multi-molecular assemblies called microcarriers, are made by the prostate-like accessory gland of the male and contain a central fatty (lipid) core wrapped with multiple proteins, including a molecule called Sex Peptide. When Sex Peptide is released in the mated female, it stimulates her to produce more progeny and reprogrammes her brain so she rejects other male suitors.

Although Sex Peptide is only produced by a limited group of fruit fly species, lipids and lipid droplets are secreted by many glands, including the human prostate and breast. Preliminary work in flies suggests that one of the genes that is essential for the release of microcarriers from secreting cells also plays a critical role in human glands, including the breast. In fact, this regulatory gene is highly expressed in some breast cancers. This suggests that the mechanisms controlling microcarrier formation may be evolutionarily conserved and that microcarriers may play much broader roles in physiological and pathological cell-cell communication, which have yet to be recognised.

This new cell communication mechanism could have implications for breast cancer and understanding its pathology because the regulatory gene essential for driving reproductive success is also expressed in some breast cancers, so if we can better understand the gene's mechanism, it might be possible to understand how breast cancer can become pathological.

Please see the full article on the Department of Physiology, Anatomy & Genetics website.

The study was a collaboration between the groups of Professor Clive Wilson and Associate Professor Deborah Goberdhan from the Department of Physiology, Anatomy and Genetics, at The University of Oxford. This work has been supported by funding from the Biotechnology and Biological Sciences Research Council (BBSRC), Cancer Research UK, the Wellcome Trust and the Medical Research Council

Paper to be published in PNAS:

Drosophila Sex Peptide Controls the Assembly of Lipid Microcarriers in Seminal Fluid

Similar Stories

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes

Tool to detect cancer stem cell make-up in intestinal tumours

The Leedham lab have developed a new tool that assesses the relative enrichment of two main types of cancer stem cells in colorectal cancer, which may help to guide therapy selection in the future.

Dairy products linked to increased risk of cancer

The first major study to investigate dairy consumption and cancer risk in Chinese adults found that greater intake was associated with higher risks of liver cancer and female breast cancer.