Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The DELPHI project, one of three clinical studies within the DeLIVER programme for early detection of liver cancer, has started recruiting patients.

The DeLIVER logo

DeLIVER is a five-year Cancer Research UK-funded research programme led by Professor Ellie Barnes (Nuffield Department of Medicine) that aims to detect liver cancer earlier. Liver cancer is the fastest rising cause of cancer death in the UK, with more than 5,000 deaths per year. To improve survival, it is crucial to diagnose liver cancer earlier, when current treatments are more likely to be successful. However, this is challenging because symptoms are vague and late-presenting, and are frequently masked by co-occurring liver disease, such as cirrhosis.

A major goal of the DeLIVER programme is to learn more about the biology of liver cancer development and to use this information to design more sensitive detection tests. Because many people being tested for liver cancer have the high-risk condition cirrhosis, these tests need to be specific enough to detect liver cancer on top of other changes in the liver caused by cirrhosis. In order to identify the defining characteristics of early liver cancer, researchers need to perform a detailed molecular analysis of tissue from tumours and the background liver in people with liver cancer and cirrhosis and compare this to liver tissue from people with cirrhosis alone.

The DELPHI (Deep Liver Phenotyping and Immunology) study will recruit 100 participants at Oxford University Hospitals NHS Trust. 80 of these recruited participants will have cirrhosis (caused by hepatitis virus B or C, fatty liver disease or alcohol) and 20-30 participants will have liver cancer in addition to cirrhosis. After giving consent, the participants will undergo fine-needle aspiration to collect tissue from the liver. This is a safe technique established in Oxford as one of only a few centres in the UK. Blood samples will also be taken.

Cancer Research UK Clinical Research Fellow Dr Rory Peters is leading the study. He said,

“We are very pleased to have started the recruitment for the DELPHI study. The in-depth analysis of samples from the DELPHI participants will be critical for increasing our understanding of how liver cancer develops and will give insights into how this cancer can be detected earlier.”

The researchers will look at individual cells to understand the cellular make-up of the tumour and surrounding tissue, including infiltrating immune cells, and how this may influence cancer development. By comparing the tissue from participants with and without cancer, they will also look for changes in protein or metabolite levels and alterations in the levels of chemical modification of DNA by methylation using the TAPS assay developed in Oxford by Dr Chunxiao Song. They will investigate whether the changes that they observe from the tissue analysis can also be detected in the blood, which would provide evidence that a blood-based assay could be developed as a less invasive diagnostic test.

Professor Ellie Barnes, Chief Investigator for DeLIVER said,

“The DELPHI study is one of three clinical projects within the DeLIVER programme. Together, these studies will inform us which of our diagnostic technologies perform best at detecting liver cancer at the earliest stages. We hope this work will lead to a step-change in earlier liver cancer diagnosis and improved patient survival.”

 

Read more about the DeLIVER programme in the OxCODE liver cancer early detection research showcase.

Similar Stories

Oxford to assess revolutionary multi-cancer blood test in trial, for future implementation in the NHS

A partnership between the University of Oxford and GRAIL, LLC will evaluate the use of a new, non-invasive, multi-cancer early detection test known as Galleri in suspected cancer patients.

Oxford Cancer Analytics awarded £1.27M to revolutonise lung cancer management

OXcan, an Oxford University spin out, has raised money to apply their machine learning approach to lung cancer early detection

Vaccine for treating cancer made possible using Oxford COVID vaccine technology

A new publication from Benoit Van den Eynde's group has shown that a viral vector cancer vaccine generates effective anti-tumour immune responses and, in combination with immunotherapy, decreases tumour size and increases survival rates in mouse models.