Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Deep-sequencing methods are rapidly developing in the field of B-cell receptor (BCR) and T-cell receptor (TCR) diversity. These promise to revolutionise our understanding of adaptive immune dynamics, identify novel antibodies, and allow monitoring of minimal residual disease. However, different methods for BCR and TCR enrichment and amplification have been proposed. Here we perform the first systematic comparison between different methods of enrichment, amplification and sequencing for generating BCR and TCR repertoires using large sample numbers. RESULTS: Resampling from the same RNA or cDNA pool results in highly correlated and reproducible repertoires, but resampling low frequency clones leads to stochastic variance. Repertoires generated by different sequencing methods (454 Roche and Illumina MiSeq) and amplification methods (multiplex PCR, 5' Rapid amplification of cDNA ends (5'RACE), and RNA-capture) are highly correlated, and resulting IgHV gene frequencies between the different methods were not significantly different. Read length has an impact on captured repertoire structure, and ultimately full-length BCR sequences are most informative for repertoire analysis as diversity outside of the CDR is very useful for phylogenetic analysis. Additionally, we show RNA-based BCR repertoires are more informative than using DNA. CONCLUSIONS: Repertoires generated by different sequencing and amplification methods are consistent, but we show that read lengths, depths and error profiles should be considered in experimental design, and multiple sampling approaches could be employed to minimise stochastic sampling variation. This detailed investigation of immune repertoire sequencing methods is essential for informing basic and clinical research.

Original publication

DOI

10.1186/s12865-014-0029-0

Type

Journal article

Journal

BMC Immunol

Publication Date

05/08/2014

Volume

15

Keywords

DNA, Genetic Variation, Humans, RNA, Receptors, Antigen, B-Cell, Sequence Analysis, DNA, Stochastic Processes