Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

High-throughput sequencing of the DNA/RNA encoding antibody heavy- and light-chains is rapidly transforming the field of adaptive immunity. It can address key questions, including: (i) how the B-cell repertoire differs in health and disease; and (ii) if it does differ, the point(s) in B-cell development at which this occurs. The advent of technologies, such as whole-genome sequencing, offers the chance to link abnormalities in the B-cell antibody repertoire to specific genomic variants and polymorphisms. Here, we discuss the current research using B-cell antibody repertoire sequencing in three polygenic autoimmune diseases where there is good evidence for a pathological role for B-cells, namely systemic lupus erythematosus, multiple sclerosis and rheumatoid arthritis. These autoimmune diseases exhibit significantly skewed B-cell receptor repertoires compared with healthy controls. Interestingly, some common repertoire defects are shared between diseases, such as elevated IGHV4-34 gene usage. B-cell clones have effectively been characterized and tracked between different tissues and blood in autoimmune disease. It has been hypothesized that these differences may signify differences in B-cell tolerance; however, the mechanisms and implications of these defects are not clear.

Original publication




Journal article



Publication Date





3 - 17


B-cell, B-cell receptors, antibodies, autoantibodies, autoimmunity, Antibodies, Autoimmune Diseases, High-Throughput Nucleotide Sequencing, Humans, Multifactorial Inheritance