Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The current paradigm describing asthma pathogenesis recognizes the central role of abnormal epithelial function in the generation and maintenance of the disease. However, the mechanisms responsible for the initiation of airway remodeling, which contributes to decreased lung function, remain elusive. Therefore, we aimed to determine the role of altered pulmonary gene expression in disease inception and identify proremodeling mediators. METHODS: Using an adenoviral vector, we generated mice overexpressing smad2, a TGF-β and activin A signaling molecule, in the lung. Animals were exposed to intranasal ovalbumin (OVA) without systemic sensitization. RESULTS: Control mice exposed to inhaled OVA showed no evidence of pulmonary inflammation, indices of remodeling, or airway hyper-reactivity. In contrast, local smad2 overexpression provoked airway hyper-reactivity in OVA-treated mice, concomitant with increased airway smooth muscle mass and peribronchial collagen deposition. Pulmonary eosinophilic inflammation was not evident, and there was no change in serum IgE or IgG1 levels. The profound remodeling changes were not mediated by classical pro-inflammatory Th2 cytokines. However, uric acid and interleukin-1β levels in the lung were increased. Epithelial-derived endothelin-1 and fibroblast growth factor were also augmented in smad2-expressing mice. Blocking endothelin-1 prevented these phenotypic changes. CONCLUSIONS: Innate epithelial-derived mediators are sufficient to drive airway hyper-reactivity and remodeling in response to environmental insults in the absence of overt Th2-type inflammation in a model of noneosinophilic, noninflammed types of asthma. Targeting potential asthma therapies to epithelial cell function and modulation of locally released mediators may represent an effective avenue for therapeutic design.

Original publication




Journal article



Publication Date





1579 - 1588


animal models, asthma, epithelium, innate immunity, remodeling, Airway Remodeling, Animals, Asthma, Bronchial Hyperreactivity, Disease Models, Animal, Endothelin-1, Female, Gene Expression, Inflammation Mediators, Mice, Mice, Transgenic, Muscle, Smooth, Ovalbumin, Respiratory Mucosa, Smad2 Protein