

DPhil in Cancer Science University of Oxford 2024 Intake Project Book

OXFORD

CENTRE

Oxford University Hospitals NHS Foundation Trust

DPhil in Cancer Science 2024 Intake Project Book

Introduction

This handbook provides an overview for prospective students looking to study for a DPhil in Cancer Science starting in 2024 at Oxford University. The Programme provides research based doctoral training for cancer researchers from clinical, biological, engineering, mathematics, and statistics background. Students will receive a world-leading research training experience that integrates an education initiative spanning cancer patient care, tumour biology and research impact; on- and post-programme mentorship; and a specialised, fundamental, subject-specific training tailored to individual research needs. Students participating in the scheme will be offered:

- a choice of interdisciplinary cutting-edge cancer research projects.
- the ability to gain a working in-depth knowledge of the fundamentals of cancer biology and cancer patient care through advanced level seminars.
- a world-renowned research environment that encourages the student's originality and creativity in their research.
- opportunities to develop skills in making and testing hypotheses, in developing new theories, and in planning and conducting experiments.
- an environment in which to develop skills in written work, oral presentation and publishing the results of their research in high-profile scientific journals, through constructive feedback of written work and oral presentations.

At the end of their DPhil course, students should:

- have a thorough knowledge of the basic principles of cancer research including the relevant literature and a comprehensive understanding of scientific methods and techniques applicable to their research.
- be able to demonstrate originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field.
- have developed the ability to critically evaluate current research and research techniques and methodologies.
- be able to act autonomously in the planning and implementation of research.
- have the grounding for becoming an influential cancer researcher of the future.

Selection Criteria & Eligibility

For this admission round, we are open to applications from two tracks in the programme, as described below, meaning that non-clinicians are eligible to apply for the fully funded (at home rate) studentships.

Application Track 3 – Non-Clinical/Fundamental Scientist. Science graduates that hold (or be predicted to achieve) the equivalent of a first-class or strong upper second-class undergraduate degree with honours in biological, medical, or chemical science, as appropriate for the projects offered.

Application Track 4 – Non-Clinical/Fundamental Scientist. Science graduates that hold (or be predicted to achieve) the equivalent of a first-class or strong upper second-class undergraduate degree with honours in engineering, mathematical/data, *or* physical science, as appropriate for the projects offered.

All applicants will be judged on the following:

- commitment and passion to a career in cancer research
- evidence of motivation for and understanding of the proposed area of study
- commitment to the subject, beyond the requirements of the degree course
- preliminary knowledge of relevant research techniques
- capacity for sustained and intense work
- reasoning ability and academic curiosity.

Funding

All offered places are fully funded at the home rate. This includes stipend, University/College fees, and a research consumables budget of ~£13k p.a. Stipend provisions are summarised below:

- Application Tracks 3: 4 years of stipend at the flat rate of £21,000 per annum.
- Application Tracks 4 : 4 years of stipend at the flat rate of £21,000 per annum.

International applicants are eligible; however, funding is limited to the Home level for this programme and therefore international applicants would need to either source further funding or support themselves financially for the remaining fees.

How to Apply

A detailed summary on how to apply can be found <u>here</u>. In brief, prospective students apply with a prioritised list of three projects selected from this booklet and/or our paediatric oncology project booklet by **Friday 19th April 2024.** Shortlisted students will be invited to interview in May. If successful, students will be allocated a project on the basis of their ranking during the review process. It is strongly suggested that students contact supervisors of projects they are interested in applying for prior to application.

Projects

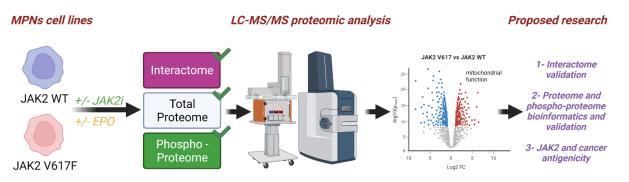
Projects are listed below in the following structure "Title Eligible Application Tracks – Primary Supervisor Page number."

Clicking on the project title below will take you to the project page.

Proje	ect Number Page Nu	umber 3
1.	Comprehensive Proteomics Study of Oncogenic JAK2 as a Basis for Improved Therap Against Myeloproliferative Neoplasms ^{3,4} – Dr Adán Pinto-Fernández	oies 6
2.	Understand the developmental origin of Clear Cell Sarcoma using long-read single c sequencing . ^{3,4} – Assoc Prof. Sarah Snelling	ell 8
3.	How does macrophage marker F4/80 control peripheral tolerance during tumour progression? ^{3,4} – Prof. Kim Midwood	10
4.	Chronic infection, host immunity, and cancer risk ^{3,4} – Ling Yang	12
5.	Myeloid cells in sustained intestinal inflammation and colorectal cancer: the role of Prof. Irina Udalova	IRF5 ³ 14
6.	Therapeutic manipulation of reactive oxygen species in ATRX-deficient cancers ³ – Pl Ester Hammond	rof. 16
7.	Identifying ploidy-dependent mitotic vulnerabilities during DNA damage repair and chromosome segregation ³ – Prof. Ulrike Gruneberg	18
8.	Spatial resolution of the human transcriptome during gastrointestinal tumorigenesi Dr. Francesco Boccellato	is — ^{3,4} 20
9.	ADP-ribosyl hydrolase as a biomarker for PARP inhibitor sensitivity/resistance ^{3,4} – F Ivan Ahel	Prof. 22
10.	Improving Immunotherapeutic Efficacy in Colorectal Cancer Using Ultrasound-active Nanoparticles and Image-guided Drug Delivery ^{3,4} – Prof. Tim Elliot	ated 24
11.	Uncovering the regulation and functions of supermeres in colorectal cancer ^{-3,4} – Pro Wilson	of. Clive 27
12.	Deciphering spatial differences in Histopathological subtype of colorectal cancer live metastasis (CRLM) ^{3,4} – Dr. Alex Gordon-Weeks	er 30
<i>13.</i>	Targeting innate immunity for intestinal injury recovery ^{- 3} Dr. Monica Olcina	32
14.	Investigating an interplay between autoimmunity and cancer ³ – Prof. Xin Lu	34
15.	An integrated systems biology approach to investigate the spatial Myeloma tumou microenvironment ^{3,4 –} Prof. Udo Oppermann	r 36
16.	Do mutations in cancer arise through histone post-translational modifications? ^{3,4} – Prof. Peter Sarkies	Assoc 38
17.	Interrogating the fibroblast phenotype of DNA repair deficient cancer ³ – Assoc Prof. Parkes	Eileen 40
18.	Exploring the biological drivers of 1q21+ high risk Myeloma by using multi-OMICS a of patient derived tumour, immune cells and bone marrow aspirates ^{3,4} – Prof. Anjan	-
	Thakurta	42

19.	Investigating the role of hypoxia for the FLASH effect by combining FLASH Radiation with hypoxia-modulated anticancer drugs ^{3,4} – Kristoffer Petersson 44	4
20.	Exploiting synthetic defects in metabolism and DNA repair to improve the treatment of glioma and AML ³ - Prof. Peter McHugh 48	6
21.	BLOod Test Trend for cancEr Detection (BLOTTED): an observational and prediction model development study using English primary care electronic health records data ^{3,4 –} Dr. Pradeep S. Virdee	8
22.	Tackling Cancers Defective of High-Fidelity DNA Repair Mechanisms ^{,3,4} – Fumiko Esashi 50	0
<i>23</i> .	Developing single-cell transcriptomics tools for PARP inhibitor resistance in BRCA1/2- deficient cells and tumours ^{3,4} – Prof Madelena Tarsounas 53	3
24.	Harnessing measurements of the tumour microenvironment to improve the early detection of prostate cancer. ^{3,4} – Professor Richard Bryant 55	
25.	Investigating Hypoxic Adaptation in Glioblastoma (GBM) Stem Cells through Pooled Kinome-Wide CRISPR-Cas9 Knockout Screen ³ – Dr. Sneha Anand 57	7
26.	Investigating the adaptive immune responses to tumour neo-antigen and the impact on patient disease course. ^{3,4} –Assoc Prof. Rachael Bashford-Rogers 59	9
27.	Epigenetic control of cancer cell phenotypes via nuclear F-actin based chromosome motility. ³ – Prof. Eric O'Neil 62	1
28.	Describing T Cell recognition of tumours by machine-learning and statistical models ⁴ – Assoc Prof. Hashem Koohy 63	3
29.	Urological cancers beyond the microscope; novel multiomic analysis of features associated with DNA instability and the tumour immune micro-environment ^{3,4} – Assoc Prof. Clare Verrill	
30.	Investigating the role of the ubiquitin ligase BIRC6 in aneuploid glioblastoma cell survival ³ – Dr Paul Elliott	
31.	Characterising the NK/Myeloid crosstalk during tumour immune escape ³ – Assoc Prof. Audrey Gérard	9
32.	The impact of Hypoxia on HLA-E surface expression and peptide presentation ³ – Assoc Prof Geraldine Gillespie	
<i>33</i> .	An interdisciplinary approach to understand how interactions between proliferating and invasive melanoma cells can promote metastasis ⁴ – Prof. Ruth Baker 73	3
34.	Exploring different modalities of growth factor inhibitor to treat cancer. ³ – Dr. Jon Elkins 75	5
35.	Assessment of Oesophageal cancer patient responses to immunotherapy via human tissue avatars. ³ – Prof. Richard Owen 72	
36.	Spatial interrogation of low grade prostate cancer to identify genomic events responsible for driving indolent not aggressive disease ^{,3,4} – Dr. Alastair Lamb 78	8
37.	New Immune Therapies for Acute Myeloid Leukaemia (AML) And Myeloid Blood Cancers ^{3,4} – Prof. Paresh Vyas	

38.	Elucidating the role of trans-lesion synthesis DNA polymerases in mutational processes a therapy resistance ^{,3,4} - Marketa Tomkova	nd 82
39.	Multi-cancer detection testing in clinical practice. ^{3,4} - Dr. Brian Nicholson	84
40.	Understanding STING regulation in cancer and the crucial role of ubiquitination in the ER ³ Prof. John Christianson	- 86
41.	Data Driven approaches for addressing inequalities in Cancer Outcomes - ^{3,4} Prof Eva Morris	88
42.	Molecular enhancement of vaccine-induced immune responses for cancer therapy - ³ Proj Paul Klenerman	f. 90
43.	Peptide specific natural killer cell receptors in cancer – ³ Malcom Sim	92
44.	Modulating inhibitory receptor signalling to enhance the T-Cell response in Cancer – ^{3,4} Ricardo Fernandes	94
45.	Engineered oncolytic herpes virus therapy for neuroblastoma – ^{3,4} Dr Alistair Easton	96
46.	Pre-Clinical modelling of oncolytic virus therapy for hepatic Colorectal Cancer metastases using ex-vivo, perfused, hepatectomies ^{3,4} Dr Kerry Fisher	5 98
47.	Building Patient specific digital twins for cancer drug development and cancer treatment ^{3,4} Assoc Prof. Rachael Bashford Rogers 1	- 00
48.	Influence of viral based delivery methods on distinct pathways of antigen uptake and presentation: implications for precision vaccine development - ^{3,4} Prof. Sarah Rowland- Jones	
49.	Spatial analysis of the bone marrow in myeloproliferative neoplasms DNA ⁴ Prof. Helen Byrne	04



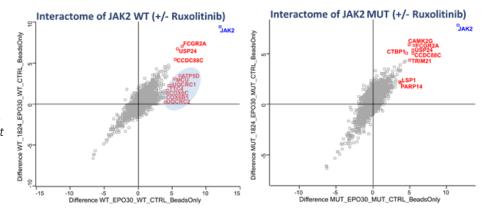
Comprehensive Proteomics Study of Oncogenic JAK2 as a Basis for Improved Therapies Against Myeloproliferative Neoplasms ^{3,4} – Dr Adán Pinto-Fernández

Primary Supervisor: Dr. Adán Pinto-Fernández Additional Supervisors: Prof. Benedik Kessler Eligibility: Tracks 3 & 4 are eligible to apply for this project.

Abstract of the project

Myeloproliferative neoplasms (MPN) are progressive blood cancers where the bone marrow overproduces mature white blood cells. Of interest, an activating mutation in a cellular protein called JAK2 is found in most MPN cases. Ruxolitinib (Jakafi) is a highly potent and selective JAK2 inhibitor approved for MPN in 2011 and has demonstrated major benefits to patients. However, most patients with mutated JAK2 do not respond to this drug and, therefore, the identification of more efficient therapies remains critical. (More info in references 1 and 2, at the end of the proposal). This PhD project aims to understand why current therapies targeting JAK2 for the treatment of myeloproliferative neoplasms do not work in patients carrying the abovementioned mutation. Understanding the functional consequences of this mutation will provide novel insights for overcoming resistance to therapy and eventually improve the survival and life quality of MPN patients. We performed a comprehensive mass spectrometry-based interactomic, proteomic, and phospho-proteomic analysis to identify proteins associated with activated JAK2 v617F (HEL, SET2, and UKE1). The cells were treated with Erythropoietin (EPO) at different time points (0, 5 min., 15 min., and 30 min.) in the presence/absence of two JAK2 inhibitors, 1824 (Ruxolitinib) or 532. Interactome data has been fully analysed and proteome and phospho-proteome data have been acquired and preliminarily analysed. *The proposed research involves the validation of the interactome data, the analysis of the proteome and phospho-proteome data and the study of JAK2 roles in <i>MPN resistance to immunotherapy*. Project overview in **Figure 1**.

Figure 1: Discovery of JAK2 wildtype versus V617F mutant dependent molecular pathways. Proteomic workflow including interactome, phospho-proteome, and total proteome analysis of five different blood cancer cell lines. Proposed research includes the validation of the JAK2 interactome, the comprehensive bioinformatic analysis of the total proteome and phosphor-proteome data and the study of JAK2 in cancer immunogenicity.


Analysis of the JAK2 interactome unveiled the **association of wildtype JAK2 with mitochondrial components** upon activation with EPO. Notably, JAK2 inhibitors did prevent EPO-dependent binding of JAK2 WT to such mitochondrial components. Most importantly, this **regulation seemed to be lost in cells harbouring the activating V617F mutation (Figure 2)**, unveiling a potential resistance mechanism in the cells with the mutation.

Our results represent novel biology associated with JAK2 signalling and EPO activation cascades and could possibly provide a potential link to oxygen sensing and energy metabolism, affecting cellular proliferation and differentiation. Supporting these observations, previously published data described that interfering with mitochondrial functions induced cell death in MPN cells containing the activating mutation in JAK2. In summary, the appointed PhD student, with the guidance of experts in cancer research and applying advanced biomedicine and bioinformatics tools, will aim to validate and expand the above-described findings in order to better understand how mutated JAK2 works and to identify novel, more efficient, treatments for MPN.

Figure 2: JAK2 inhibition prevents association of mitochondrial components to wildtype (circled in blue), but not to V617F JAK2. Comparative scatter plots showing the JAK2 interactomes in WT cells (left) and JAK2V617F cell lines (right). Conditions EPO 30 minutes treatment in the presence/absence of JAK inhibitor 1824 (Ruxolitinib) were plotted. The bait is labelled in blue and selected interactors in red.

Research objectives and proposed outcomes

- To study the co-localisation/interaction between JAK2 (mutant and WT), upon EPO stimulation (+/- JAK inhibitor and +/-JAK2 genetic inhibition), and the identified mitochondrial components by co-immunoprecipitation and confocal microscopy. These experiments aim to validate the proteomics data.
- To measure mitochondrial activity reflected by oxygen consumption rate (OCR) and extracellular acidification rates (ECAR) in the same conditions using a Seahorse Real-Time Cell Metabolic Analyser and ROS production using molecular probes in a live cell imaging system.
- Evaluate whether combined use of JAK2 inhibitors and ROS inducers such as LAAO, CCCP, Rotenone, Cisplatin, enhances MPN anti-tumour therapy.
- Comprehensive bioinformatic analysis of the remaining data (phospho-proteome and total proteome) and further validation.
- Study of JAK2-dependent tumour antigenicity in T cell activation/T cell killing assays (in collaboration with Prof. Tao Dong).

Translational Potential

With this research plan, we expect to uncover novel JAK2 biology that could explain resistance mechanisms to current therapy and allow the characterisation of additional targets for the treatment of MPN. With the first three objectives of the proposal, we want to validate our interactomics data suggesting that JAK2, upon activation, has important roles in mitochondrial function and cellular metabolism. For instance, it has been shown that mutated JAK2 induced the accumulation of reactive oxygen species (ROS) in patients with MPN, highlighting key roles for the JAK2 pathway in mitochondrial activity and intracellular ROS generation (reference 3). The authors of this study suggested that targeting ROS accumulation might prevent the development of JAK2V617F MPN. Further supporting this hypothesis, another study demonstrated that a ROS inducer exhibited cytotoxicity and induced apoptosis in JAK2V617F MPN cell lines in a ROS production-dependent manner (reference 4). Based on this, we will determine whether ROS inducers enhance the anti-cancer effects of JAK2 inhibition. Importantly, additional JAK2 biology will be explored using the remaining proteomic analysis, potentially providing additional insights into resistance to JAK inhibition. Finally, the interplay between JAK2 status/inhibition and its implications to resistance to current immunotherapy have been described (reference 5) and will be investigated using relevant T cell models.

Summarise the training opportunities.

The student will have opportunities to gain expertise in advanced bioinformatics, proteomics, metabolic studies (Seahorse and mass-spectrometry), cellular biology (immunofluorescence, tissue culture, live cell imaging, gene knockdown/knockout etc), immunology (T cell activation and T cell killing) and biochemistry (immunoprecipitation and immunoblotting).

Relevant References

1.Schieber M, Crispino JD, Stein B. Myelofibrosis in 2019: moving beyond JAK2 inhibition. Blood Cancer J. 2019;9(9):74.

2.Staerk J, Constantinescu SN. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAKSTAT. 2012;1(3):184-90. 3.Marty C, Lacout C, Droin N, Le Couedic JP, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia. 2013;27(11):2187-95.

4.Machado-Neto JA, Traina F. Reactive oxygen species overload promotes apoptosis in JAK2V617F-positive cell lines. Rev Bras Hematol Hemoter. 2016;38(3):179-81.

5. Horn S, Leonardelli S, Sucker A. et al. Tumor CDKN2A-Associated JAK2 Loss and Susceptibility to Immunotherapy Resistance. J Natl Cancer Inst. 2018; 1;110(6):677-681

2. Understand the developmental origin of Clear Cell Sarcoma using long-read single cell sequencing .^{3,4} – Assoc Prof. Sarah Snelling

Primary Supervisor: Assoc Prof. Sarah Snelling Additional Supervisors: Assoc Prof. Adam Cribbs Eligibility: Tracks 3 and 4 students are eligible to apply for this project.

Abstract

Clear Cell Sarcoma (CCS) of tendons, is a rare malignant soft tissue sarcoma, typically derived from neural crest cells. It usually presents in the distal lower extremities of young adults, frequently attached to tendons. It behaves like a highgrade soft tissue sarcoma and is associated with poor overall survival due to spreading to other parts of the body with recurrence after treatment also being very common. CCS neoplastic cells express the EWSR1-ATF1 fusion gene in most cases, with EWSR1-CREB1, EWSR1-CREM or EWSR1-DDIT3 fusion genes comprising a smaller subset of cases.

Prof Snelling leads the <u>Tendon Seed Network</u> chapter of the Human Cell Atlas, whose aim is to investigate the cell architecture of healthy human tendons. We have performed single-cell sequencing on several anatomically different tendon tissues across several healthy donors. Tendons have historically been thought of as acellular, however we have shown that tendons are composed of a diverse and rich cellular microenvironment. We are now applying these technologies to generate healthy tissue atlases of other joint-resident soft tissues including synovium and ligament

Considering that very little is known about the developmental origin of CSS, we hypothesise that CSS may develop from cells residing within the tendon. As such, we will leverage the reference maps of healthy musculoskeletal tissues with single-cell sequencing data of CSS that we will generate as part of this proposed project. We will cross reference these datasets of CSS and healthy soft tissues to identify whether the cellular origin of CSS is tendons or another tissue type. We will then determine the oncogenic drivers of CSS with the long-term goal of utilising this data to enable identification of novel therapeutics to treat this currently incurable cancer.

In collaboration with the Snelling group, work in the <u>Cribbs lab</u> focuses on developing novel single-cell technology and computational analysis frameworks that empower new modes of treatment for disease. Recently we have developed scCOLOR-seq¹, a method to overcome low basecalling accuracy making long-read single-cell transcriptomic sequencing highly accurate. This new technology enables us to measure translocations, alternative splicing, and allows variant calling. We have begun to apply this technology to understand the development of drug resistance in Sarcomas.

Research objectives and proposed outcomes

Our aim is to apply long-read single-cell sequencing technology to primary CCS patient samples and then generate computational models that will help us to identify the developmental origin and oncogenic drivers of this cancer.

Work package 1: Apply scCOLOR-seq to Clear Cell Sarcoma tumours.

The student will apply scCOLOR-seq to investigate the gene expression, isoform expression, translocations, and copy number variation within 10 CSS primary tumours. Specifically, the aim of this work package will be to identify genomic signatures that can provide us with a better understanding of the developmental origin on CCS.

Work package 2: Development of a computational analysis strategy to improve long-read single-cell sequencing.

Working simultaneously alongside work package 1, bespoke computational analysis pipelines will be written to help process the long-read sequencing data. The student will work alongside Dr Cribbs, who will provide extensive computational training, to develop skills in python and R programming, as well as software development. We have already developed generic long-read single-cell sequencing workflows (ref). The student will expand the development of this code with an emphasis on cross comparison analysis of our healthy tendon, ligament, synovium and soft tissue datasets and the long-read single-cell data generated in work package 1.

Work package 3: Develop and apply machine learning models to understand the genomic features that are important for developing Clear Cell Sarcoma.

Evaluate the accuracy and utility of a variety of unsupervised and supervised classification and machine learning algorithms (e.g. k-means/hierarchical clustering, linear discriminant analysis, support vector machines, Neural Networks and others) to identify features that are important for CCS pathogenesis. Specifically, we will develop a classifier model

using data (structural variation, isoform expression, gene expression) generated from the long-read sequencing experiments. Knowledge from this model will be used to identify features that drive the development of CSS and then generate a priority list of potentially druggable targets for functional validation.

Translational Potential

The stated aim of this project is to study the developmental origin of Clear Cell Sarcoma and identify drug targets for therapy. By its very definition, this work is likely to identify novel therapeutic intervention points within the development of Clear Cell Sarcoma.

We have extensive collaborations with several pharmaceutical partners, and we will utilise these interactions to explore the translational potential of targets.

Although CSS is rare, samples are already banked (50 frozen, 35 FFPE) which guarantees analysis can take place and we have successful pilot data showing high nuclei yields and robust sequencing. Our collaborators in London have been banking samples over a number of years and this ensures numbers are adequately powered to inform the study. Furthermore, we are continuing to collect CSS samples to provide additional validation samples. This methodology can be applied to other cancers and is a long-term goal from the work, but using CSS as an initial example due to the burden of disease and lack of diagnostic or treatment pathway.

Training opportunities

The student will receive training in cellular, molecular, and epigenetic biology for this project. This will involve wet-lab workflows for generating long-read single-cell sequencing data. Extensive training in computational biology will be provided so that the student can analyse their own data. Specifically, this will include software development, data analytics, statistics and computational pipeline development. Outside the lab, the student will be expected to attend regular seminars with high profile external speakers, journal clubs and training in presentation skills, scientific writing, and data management. As part of this project, you will collaborate and be co-supervised by Prof Pillay, a clinical pathologist at UCL who will provide samples for this study.

References

1. Philpott, M. et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. *Nat Biotechnol* (2021).

2. Baldwin, M.J., Cribbs, A.P., Guilak, F. *et al.* Mapping the musculoskeletal system one cell at a time. *Nat Rev Rheumatol* **17**, 247–248 (2021).

3. How does macrophage marker F4/80 control peripheral tolerance during tumour progression? ^{3,4} – Prof. Kim Midwood

Primary Supervisor: Prof. Kim Midwood

Additional Supervisors: Professor Siamon Gordon and Dr Anja Schwenzer Eligibility: Tracks 3 and 4 are eligible to apply for this project.

Abstract

Our immune system detects tumors and activates cytotoxic T cells to destroy them. However, tumors can de-activate these cells, switching the immune response instead to become tolerant, helping cancer growth and spread. Drugs that reactivate cytotoxic T cells have revolutionized the treatment of people with cancer. However, this approach does not work for many patients, nor all types of tumor, and can be associated with severe side effects caused by the destruction of healthy tissues. Our recent data show how macrophages contribute to tumor progression, using the cell membrane marker F4/80 to communicate with, and switch on, tolerant T cells. However, whilst F4/80 is essential for tumors to survive and thrive, nothing is known about how this molecule works. We will investigate how F4/80 controls the immune axis in tumors. This will lead to a better understanding of how cancer hijacks the immune response for its own gain, and enable the design of new therapies that block this pathway, which are safer and effective in more patients than existing drugs.

Research objectives and proposed outcomes

Macrophages are terminally differentiated migratory leucocytes which sense physiologic and pathologic changes in their microenvironment through a variety of plasma membrane receptors that regulate their responses to maintain homeostasis (Fig.1A,B)[1]. In addition to specialised phagocytic receptors to recognize and clear senescent, apoptotic and necrotic cells and microbes, they are potent secretory cells able to nourish or destroy abnormal host cells and microbial targets, depending on their functional activation state. Tissue resident and recruited macrophages express adhesion molecules such as the F4/80 antigen, also known as EMR1 or ADGRE1, a widely used biomarker and the founder member of a family of 7 transmembrane G protein coupled receptors (GPCRs) that possess large extracellular epidermal growth factor-like (EGF) repeats. Human myeloid cells express a closely related EMR2 receptor, which is absent in the mouse, as well as an EMR1 homologue with distinct properties. In spite of extensive studies of its specific expression in the mouse, the role of F4/80 remains unknown. However, a major breakthrough in our understanding of its immunological function derived from studies using F4/80 knockout (KO) mice, which revealed this molecule to be dispensible for macrophage development, but responsible for peripheral tolerance. Required for Treg generation in vivo in response to a model antigen introduced into the anterior chamber of the eye [2], F4/80 expression is also essential for organ transplantation [3] and engraftment of Lewis lung cancer cells (Fig.1C-E). This project will explore the role of F4/80 in tumour-host interactions in vivo and identify cellular and extracellular binding partners of this adhesion GPCR.

Aim 1 will investigate the cellular and molecular basis of F4/80-mediated tolerance using a syngeneic, orthotopic breast cancer grafting model (well established at KIR)[4] in wild type or F4/80 null mice (maintained at the Dunn School). Immune profiling of tumor, spleen and lymph nodes during tumor growth using multicolour spectral flow cytometry (Aurora, KIR) will reveal F4/80 dependent changes in abundance, and activation/polarization status, across myeloid and lymphoid compartments. Multiplexed immunofluorescent imaging (GE CellDive, KIR) will reveal cell interaction partners of F4/80+ macrophages, and the tissue localization of these cellular networks. scRNA seq of sorted CD45+ cells from wild type and F4/80 knockout tumor bearing mice will reveal cell type-specific transcriptional changes associated with loss of F4/80, and pathway/interaction network analysis will highlight candidate effector molecules. Cellular interactions, and their contribution to F4/80-mediated tolerance, will be validated in vivo (e.g. by cell type or effector molecule depletion/blockade), and in vitro (e.g. using tumor-immune cell co-cultures) [4].

Aim 2 will identify extracellular binding partners of F4/80. More than 30 adhesion GPCRs exist, utilizing their sizable extracellular domains to form multimeric protein complexes of signalosome-like structures. Despite identification of extracellular ligands for other adhesion GPCRs, including the interaction of chondroitin sulphate (CS) and CD55 with close family members EMR2 [5] and CD97 [6] respectively, F4/80 remains an orphan receptor. F4/80 expression is elevated in specific murine breast tumor- associated macrophage subpopulations with enriched APC capabilities. These cells localize to extracellular matrix tracks that support cell infiltration into the tumor, whilst F4/80 low cells are restricted to the periphery (Fig.1F). Multiplexed imaging using a panel of matrix markers will identify tumor

components that interact with F4/80+ cells in these tracks. In parallel, the adhesion of fetal liver macrophage cell lines from wild type and F4/80 knockout mice [7](Dunn School), to purified matrix molecules (e.g. tenascin-C (TNC), fibronectin, collagen type I/IV, osteopontin, CS)(KIR) as well as more complex matrices (e.g. matrigel, tumor derived cell free matrices) which better recapitulate the 3D environment of the tumor, will be assessed. Binding sites within F4/80 for ligands will be mapped as for CS-EMR2 [6] and downstream signaling examined.

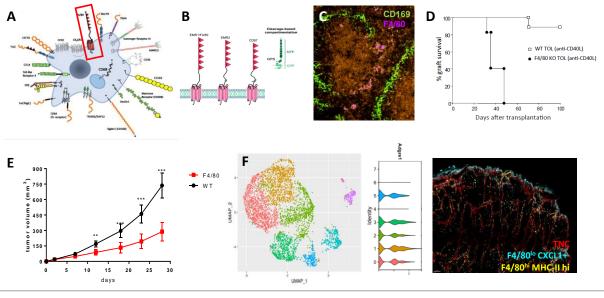


Figure 1. (A) Selected macrophage receptors. (B) Three of the EGF-TM7 family of adhesion GPCRs; EMR1, EMR2 and CD97. (C) F4/80+ APCs located in the spleen marginal zone 7d after antigen inoculation of the eye anterior chamber [2]. F4/80 deficiency abrogates tolerance during heart allograft [3](D) and Lewis cancer cell transplant (unpublished)(E). (F) F4/80 expression is elevated in MHC^{hI} macrophage subpopulations localized exclusively to matrix-rich tracks in murine breast tumors (our unpublished data).

Translational potential

Macrophages are an integral component of tumours, responding to, and in turn, influencing the malignant cells, as well as all stromal and other immune cellular and extracellular components of the tumour microenvironment. Their interactions with the extracellular matrix could affect their own growth, adhesion, migration and activation, as well as of the malignant cells and metastases. We need to learn more about their polarization, and the switch from trophic to cytotoxic potential, crucial in the tumour-host interaction. This project will establish some of the basic principles for further translation to human cancer. Among the EGF-TM7 family CD97 and EMR2 have been investigated in a range of human cancers, with, for example, changes in the cellular compartmentalization of EMR2 correlating with poor prognosis in breast cancer [8]. F4/80 has been neglected hitherto. Evidence that it mediates peripheral tolerance, which can be abrogated by targeting F4/80, makes this a compelling model for further research in mouse models of cancer. Moreover, study of the autoproteolyic cleavage of these adhesion GPCRs (Fig1B), may also be relevant to shedding of soluble receptor in vivo, which could contribute to cancer pathogenesis and to diagnosis through its presence in plasma or other body fluids [9].

Training opportunities

The student will be trained in techniques including: in vivo tumor models, immune cell isolation/activation, 2D & 3D matrix adhesion assays, multiplexed tissue imaging, spectral flow cytometry, RNA seq dataset generation and bioinformatic analysis in mouse and human pathology

References

[1] Gordon, S. and A. Plüddemann, Tissue macrophages: heterogeneity and functions. BMC Biology, 2017. [2] Lin, H.H., et al., The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med, 2005. [3] Conde, P., et al., DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015. [4] Deligne C et al, Matrix-Targeting Immunotherapy Controls Tumor Growth and Spread by Switching Macrophage Phenotype. Cancer Immunol Res. 2020. [5] Stacey, M., et al., The EGF–like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood, 2003. [6] Aust, G., L. Zheng, and M. Quaas, To Detach, Migrate, Adhere, and Metastasize: CD97/ADGRE5 in Cancer. Cells, 2022. [7] Fejer, G., et al., Nontransformed, GM-CSFdependent macrophage lines are a unique model to study tissue macrophage functions. PNAS, 2013. [8] Davies, J.Q., et al., Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival. Oncol Rep, 2011. [9] Boucard, A.A., Self-activated adhesion receptor proteins visualized. Nature, 2022.

4. Chronic infection, host immunity, and cancer risk ^{3,4} – Ling Yang

Primary Supervisor: Ling Yang

Additional Supervisors: Christiana Kartsonaki Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

Worldwide, chronic infection of certain pathogens (i.e. virus, bacteria and parasite) is responsible for more than 2 million new cancer cases each year, with about a third of these cases occur in China.¹ Although the aetiological roles of several common pathogens (e.g. *H. pylori*, HBV, HCV, and HPV) for certain cancers are well established, questions remain about their relevance for other cancers and the role of other pathogens (e.g. human herpes virus) in cancer development. Previous studies have been often constrained by small sample sizes and investigation of a single pathogen with a single cancer. Consequently, uncertainty remains about the roles of common chronic infections in cancer development and progression.² It is also unclear as to whether there are important interactions between infections and other lifestyle/behavioural risk factors for cancer, and how genetic variants in both host (e.g. human leukocyte antigen; HLA) and pathogen and their interactions influence host immune response and susceptibility to and progression of infection, as well as subsequent cancer risk. For example, variability in HLA class I or II type antigens that affect the cellular immune response to HPV may partially explain why only a minority of infected women develop cervical cancer.³

The China Kadoorie Biobank (CKB) included 0.5 million Chinese people during 2004-08 from 10 different areas across China, with different types of information collected by questionnaire and physical measurements, and with long-term follow-up of health outcomes for each participant by the linkage with national death, disease registries and nationwide health insurance systems. So far, we have collected more than 70,000 deaths and over 1.5 million hospitalization events for >5000 different diseases. In subsets of CKB participants, we also had genetic and other biomarkers (e.g. inflammation) measured.

Based on this CKB cohort, we are conducting a large casecohort study including all incident site-specific cancer cases in China (>30,000) and a randomly selected sub-cohort of participants (~10,000) to assess and quantify the role of different infectious pathogens in various cancers development. In collaboration with UK Biobank and the German Cancer Research Centre (DKFZ), a CKB customdesigned multiplex serology ⁴ panel has been developed and been used to detect and quantify 47 antibodies for 17 infectious pathogens (see details in Table), selected for

Infectious agent	Antigen
Background marker	GST
HSV1	gG
HSV2	mgG unique
VZV	gE, / gl.
EBV	VCA p18, EBNA-1, ZEBRA, EA-D, BFRF1, BGLF2, BXLF1
CMV	pp150 <u>Nter</u> , pp 52, pp 28
HHV7	U14
HHV6	IE1B trunc. IE1A trunc.
HBV	HBc. HBe
HCV	Core, NS3
Toxopl. aondii	p22, sag-1
HTLV-1	gag, <mark>env.</mark>
HIV-1	gag, <mark>env.</mark>
HPxV	BK VP1, JC VP1, MCV VP1
HPV	HPV 16 L1, HPV 16 E6, HPV 16 E7, HPV 16 E1, HPV 16 E2,
HPV	HPV 18 L1, HPV 18 E6, HPV 18 E7
C. trachomatis	pGP3
H. pylori	CagA-N, Groel, OMP, VacA-C, Catalase, HcpC, HP0305, HopA
Coxiella burnetii	CBU_1910 Com1

their cancer relevance and will enable population-specific variation in infections to be assessed in relation to different cancers. Moreover, in collaboration with the Wellcome Centre for Human Genetics, we are sequencing HBV and HCV viral genomes from ~5,000 CKB HBV infected participants, half of whom who developed incident HCC during follow-up and the other half who did not. Genome-wide association studies (GWAS) and genome-to-genome analysis will be used to investigate host-virus interactions and genotype-phenotype relationships.⁵

These, together with available lifestyle, physical measurements, medical history, other biomarkers and health outcome data, will enable comprehensive assessment of causal roles of multiple chronic infections in aetiology of site-specific cancers and certain other diseases.

The proposed DPhil project will be based on this ongoing infection and cancer programme and the specific research proposal will be developed according to the student's interests and aptitude.

Research objectives

The specific lines of investigation covered by this DPhil project will depend on the student's interests and previous training, and may be involved within following key areas of work: (1) to examine the associations of chronic infection of particular pathogens with risks of all or certain site-specific cancers and estimate the infection-related cancer burden; (2) to explore the role of host immune system genetics (e.g. HLA) in susceptibility to specific types of chronic infection and cancer; (3) to establish the value of serological markers, in combination with other lifestyle and genetic risk factors, in predicting the risk of infection-related cancers.

By the end of the DPhil, the student will be competent to review the literature, to plan, undertake and interpret analyses of large-scale data, and to report research findings, including 3-5 publications in peer-reviewed journals and presentation at conferences.

Translational potential

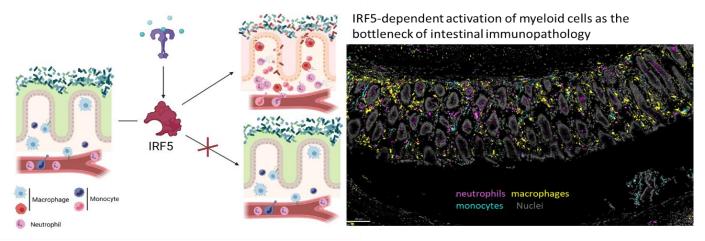
This project will lead to improved understanding about the aetiological role of infectious pathogens in cancer development, help identify high risk individuals for early detection/mass-screening and targeted cancer treatment and inform policy makers to develop and implement suitable strategies for cancer prevention locally and globally.

Training opportunities

The student will be based within the CKB research group in Nuffield Department of Population Health. There are excellent facilities and a world-class community of population health, data science and genomic medicine researchers. There will be inhouse training opportunities in epidemiology, statistics, genetics, and bioinformatics and if necessary attendance at relevant courses.

References

- 1. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S, et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4:e609-16.
- 2. IARC. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 2012; 100(Pt B):1-441
- 3. Zoodsma M, Nolte IM, Schipper M, Oosterom E, van der Steege G, de Vries EG, et al. Analysis of the entire HLA region in susceptibility for cervical cancer: a comprehensive study. J Med Genet. 2005;42(8):e49.
- 4. Waterboer T, Sehr P, Michael KM, Franceschi S, Nieland JD, Joos TO, et al. Multiplex human papillomavirus serology based on in situ-purified glutathione s-transferase fusion proteins. Clin Chem. 2005;51(10):1845-1853.
- 5. Ansari MA, Pedergnana V, L C Ip C, Magri A, Von Delft A, Bonsall D, et al. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat. Genet. 2017; 49:666–673.



5. Myeloid cells in sustained intestinal inflammation and colorectal cancer: the role of IRF5 ³– Prof. Irina Udalova

Primary Supervisor: Prof. Irina Udalova Additional Supervisors: Prof. Fiona Powrie Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Dysregulation of the intestinal immune system can lead to inflammation, which may progress to colorectal cancer (CRC)n¹. Myeloid cells are playing a central role in maintenance of homeostasis, initiation of inflammation, restoration of tissue upon injury and mediation of chemoresistance in tumours. Integrating cues of their immediate tissue microenvironment. Interferon Regulatory Factor 5 (IRF5) has been identified to act as a master transcription factor in myeloid cells that controls both acute and chronic inflammation and is protective in pathogen clearance ^{2,3,4}. IRF5 has been shown to regulate macrophage transcription of pro-inflammatory mediators, monocytes differentiation into pro-inflammatory macrophage phenotype, and more recently, neutrophil effector responses without compromising neutrophil maturation processes or their ability to enter into the tissue ⁵. Our preliminary data suggest that IRF5 function in myeloid cells is indeed a key element in controlling the onset of intestinal inflammation and pathology, but its role in resolution of inflammation or cancerogenesis is not well understood. Of relevance, IRF5 has also been identified as a DNA-damage sensor, highlighting a potential beneficial role in CRC ⁶. Both tumour-associated macrophages (TAMs) and tumour-associated neutrophils (TANs) appear to play a major role in cancer progression or hinderance ⁷. Therefore, dissecting the molecular mechanisms orchestrating neutrophil, monocyte and macrophage function is crucial for identification of treatment options for both inflammatory bowel diseases (IBD) and CRC.

Research Objectives

First, we will use advanced imaging and spatial transcriptomic analyses to compare myeloid cell heterogeneity in the colon in resolution of inflammation using the *Helicobacter hepaticus* and anti-IL10R (Hh + alL10R) colitis model ² with that in microbe driven colitis associated cancer (CAC) models ⁸, characterised in the Powrie group; as well as during the onset and peak of inflammation, characterised previously in our lab. It was suggested that localisation of macrophages and neutrophils within the tumour microenvironment might be a crucial determinant of their function ⁹. Therefore, using already generated reporter strains (e.g. CX3CR1-GFP x Ly6G-Tomato) we will assess the localisation of different macrophage and neutrophil subsets and their interaction cell-cell contacts, which could also provide further information about their function and potential targeting. This will help identify molecular targets in shaping their phenotype and directing towards resolution rather than progression of inflammation into cancer development.

Second, we will assess the role of IRF5 in myeloid cells. Previous work in the lab has profiled IRF5-dependent inflammatory CD11c+ macrophages at peak of inflammation using scRNA-seq ². New data suggest the role for IRF5 in driving neutrophil-dependent inflammation. Based on this work, we aim to utilise already generated targeted mouse models (CX3CR1-cre ER2 IRF5 fl/fl; CCR2-mKate-cre ER2 IRF5 fl/fl; Ly6G-cre IRF5 fl/fl) to understand the beneficial vs pathologic role of IRF5 in resolution of inflammation. We hypothesize that lack of IRF5 in macrophages may be beneficial as macrophages are being polarised towards a tissue-regenerating phenotype. Furthermore, the T cell pool was shifted at peak of inflammation, which might be a result of different T cell priming by IRF5-proficient and deficient macrophages. The lack of IRF5 in neutrophils may be detrimental as neutrophils can be involved in priming barrier cell repair and/or regenerating the extra cellular matrix around the perturbances.

Third, the role of TAMs and TANs in CRC is yet unclear with various studies suggesting both detrimental and beneficial effects. Investigation of the differences in T cell priming of IRF5-deficient macrophages and/or neutrophils will also offer insight of the interplay of IRF5 in innate immune cells with the adaptive immune system in both resolution and CRC. Thus, in addition to inhibition of IRF5 (as above) we would also consider stimulating IRF5 specifically at tumour sites might improve anti-cancer immunity ¹⁰. This could be achieved by targeted delivery of adenoviral vector expressing IRF5 (overexpression) or inhibition of IRF5 activation through phosphorylating kinase inhibition ¹¹ in CAC models.

Translational potential

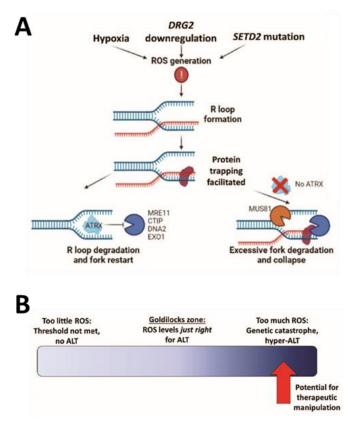
T cell immunity, which is beneficial in tumours, is undermined by immunosuppressive myeloid cells, of which a subset of TREM2+ macrophages have been identified as a potential target in tumours ¹². Understanding the role of macrophages as pivotal cells in the resolution of inflammation as well as progression of inflammation into CRC will help shaping specific therapies targeting macrophages. IRF5 also plays a crucial role in mediating monocyte recruitment and their differentiation into pro-inflammatory macrophages, as well as in effector neutrophil functions, during intestinal inflammation and may therefore be central during resolution and cancer development. Moreover, the inhibitor of IRF5 activation pathway may prove beneficial for inflammation-induced cancer.

Training opportunities

The student will be trained in the Hh + alL10R colitis and CAC models as well as in basic immunology techniques like flow cytometry, RT-qPCR and *in vitro* cultures to analyse the outcomes. Furthermore, insights and potential guided analysis of single-cell RNA sequencing as well as cutting-edge microscopy and spatial transcriptomics (GeoMx and CosMx Nanostring platforms) to define the localisation of macrophage subsets within the tumour microenvironment will be made available.

References

1. Mantovani, A *et al.* Cancer-related inflammation. *Nature* 454, 436–444 (2008). 2. Corbin, A. L. *et al.* IRF5 guides monocytes toward an inflammatory CD11c + macrophage phenotype and promotes intestinal inflammation. *Sci. Immunol.* 6085, 1–16 (2020). 3. Weiss, M. *et al.* IRF5 controls both acute and chronic inflammation. *Proc. Natl. Acad. Sci. U. S. A.* 112, 11001–11006 (2015). 4. Pandey, S. P., Yan, J., Turner, J. R. & Abraham, C. Reducing IRF5 expression attenuates colitis in mice, but impairs the clearance of intestinal pathogens. *Mucosal Immunol.* 12(4):874-887 (2019). 5. Khoyratty, T. E. & Ai, Z. Distinct transcription factor networks control neutrophil-driven inflammation. *Nat. Immunol.* 22(9):1093-1106 (2021). 6. Hu, G. et al. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death. *Cancer Res.* 65, 7403–7412 (2005). 7. Quail, D. F. *et al.* Neutrophil phenotypes and functions in cancer: A consensus statement. *J. Exp. Med.* 219, 39 (2022). 8. Kirchberger, S. *et al.* Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. *J. Exp. Med.* 210, 917–931 (2013). 9. Caprara, G., Allavena, P. & Erreni, M. Intestinal Macrophages at the Crossroad between Diet, Inflammation. *Mucosal Immunol.* 10, 716–726 (2017). 11. Ryzhakov et al. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. *Nat Commun* 12(1):6702 (2021). 12. Molgora, M. *et al.* TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. *Cell* 182(4), 886-900 (2020).



6. Therapeutic manipulation of reactive oxygen species in ATRX-deficient cancers ³ – Prof. Ester Hammond

Primary Supervisor: Prof. Ester Hammond Additional Supervisors: Dr Anna M. Rose Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Telomere maintenance is an essential cancer hallmark, allowing malignant cells to divide without limit. One major telomere maintenance mechanism is called Alternative Lengthening of Telomeres (ALT). The ALT-pathway is particularly prevalent in aggressive brain cancers (such as high-grade glioma (>40%) and astrocytoma (90%)), as well as cancers of mesenchymal origin, such as osteosarcoma [1]. The central genetic event underpinning ALT-pathway activation is loss of ATRX [2]. In addition to ATRX loss, ALT-pathway activation requires another factor. Our recent work demonstrated that this second factor is excessive accumulation of reactive oxygen species (ROS) in the tumour microenvironment, which could be due to hypoxia, concurrent gene mutation and/or redox gene dyrsregulation. Elevated ROS levels lead to trapping of DNA-interacting proteins, which subsequently causes replication fork stalling and ALT-pathway activation [3]. ATRX protein is essential for fork re-start and so, in the absence of ATRX, there is aberrant downstream processing of stalled forks [4,5]. This aberrant processing produces DNA double-strand breaks, the genetic substrate for ALT-telomere elongation (**Figure A**).

Crucially, however, there is a "Goldilocks zone" of ROS for cells lacking ATRX: too little ROS, and the threshold of ALT-pathway activity is not met, and telomere synthesis is not triggered. Excessive ROS levels, though, lead to genetic catastrophe and cell death, as ATRX-null cells have intrinsic vulnerability to DNA damage due to the many roles of ATRX in genome integrity. There is, however, a level at which ROS are "just right", where ATRX-deficient cells can leverage ROS-induced trapping of proteins to allow telomere maintenance and limitless cell division (**Figure B**). Therapeutic manipulation of ROS levels to outside of the "Goldilocks zone" provides a novel approach to treatment for ATRX-deficient ALT cancers.

The central aim of this project is to exploit the ROSdependency of ALT cancer cells for therapeutic benefit in ATRX-deficient tumours. In particular, we will explore the potential of novel redox modulating agents i.e. those that either increase ROS directly or, indirectly by decreasing anti-oxidant capacityin sensitization of ATRX-deficient cancer cell lines and animal models to standard of care chemotherapy and radiotherapy. As well as assessing the efficacy of these agents, we will study the molecular mechanisms and underpinning cell biology, allowing a deeper understanding of the role of ROS in ATRXdeficient ALT cancers.

Research objectives

The rationale for this study is that whilst ATRX-mutation drives the evolution of ALT-cancers, it also provides a unique therapeutic opportunity: ATRX is ubiquitously-expressed with roles in many cellular processes and so cells lacking ATRX have vulnerabilities which can be therapeutically exploited. In this project, we will explore the genetic and cellular perturbations in ALT-cancers, in particular, the role of abnormal reactive oxygen species (ROS) metabolism. Prof. Hammond is an expert in redox and hypoxia biology in cancer. Dr Rose is an expert in ATRX cell biology and the ALT pathway, with clinical expertise in paediatric oncology. Our pilot work demonstrated that ALT-positive gliomas have strong dysregulation of redox pathway genes, highlighting the potential role of ROS. Further, treatment of ATRX-deficient cells with ROS-generating agents induced ALT-pathway activity in non-ALT cell lines. Excessive ROS led to trapping of proteins

OXFORD CENTRE

on DNA, leading to the formation of abnormal DNA lesions. Further, we found that both the accumulation of trapped proteins and induction ALT-pathway was dependent on the accumulation of R-loops, RNA:DNA hybrid structures. Our preliminary data also suggested that pre-treatments which elevate ROS (such as silencing of SOD1 gene) sensitised ATRX-deficient cells to camptothecin, through induction of hyper-ALT. Camptothecin derivatives – such as irinotecan/topotecan – are widely used in the treatment of brain cancers. In this project, we will greatly expand this preliminary data by using ROS-generating treatments to sensitise a range of ALT brain cancer cell lines to various chemotherapeutic agents (e.g. etoposide, camptothecin-derivatives, PARP-inhibitors). Through the collaboration with Dr Monica Olcina, we will also assess the role of such pre-treatments in radiosensitisation, including in pre-clinical murine models, as appropriate. Radiotherapy itself is known to generate ROS and, as such, this could represent a novel approach to hyper-ALT induction

Translational potential

Development of novel therapeutics for ATRX-deficient cancers is an urgent area of clinical unmet need [6,7]. The outcomes for ALT-cancers is very poor, with little progress made in survival in over 50 years. The work in this project is hypothesisdriven and will generate pre-clinical data that will be critical in informing future clinical trials and translational work. The insights into gene dysregulation, telomere dysfunction and genome stability will clarify the pathways involved in ALT-cancer biology, which is the first critical step in developing targeted therapies. The project will involve the opportunity to conduct cell and animal studies using novel ROS-inducing agents, assessing their ability to sensitise ATRX-deficient cells to traditional standard-of-care chemotherapy and radiotherapy. These assays will hopefully lead to future early-phase clinical trials of the novel agents. Further, our work into chemosensitisation and radiosensitisation will align directly with our groups wider work into oncolytic virus delivery of synthetic lethal shRNA molecules to ATRX-deficient cells.

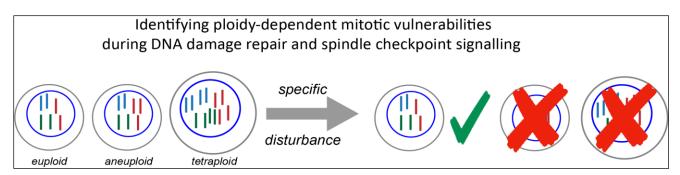
Training opportunities

Prof. Hammond, Dr Rose and Dr Olcina have worked together collaboratively for the past 2-years, developing a new and exciting interdisciplinary collaboration. They have a strong track record for supervising DPhil, MSc and BSc students. This project offers the opportunity to join a well-funded, collaborative and interdisciplinary team. The student will be based jointly in the Hammond lab (Department of Oncology) and Rose group (Department of Paediatrics), with strong links to the Olcina group. The student will have the opportunity to learn a wide range of molecular and cell biology techniques including tissue culture, protein analysis, qRT-PCR, c-circle assay, immunoflouresnce and microscopy, RADAR assay, gene silencing and overexpression, use of radiation sources, hypoxia chambers, and *in vivo* mouse work.

References

[1] Heaphy CM, et al. (2011) The American journal of pathology;179(4):1608-1615. [2] Clatterbuck-Soper SF & Meltzer PS (2023) Genes, 14(4):790. [3] Rose AM et al. (2023) Nucleic acids research, gkad150. Advance online publication. [4] Huh MS et al. (2016) Cell death & disease;7(5):e2220. [5] Lu R& Pickett HA (2022) Open biology:12(3):220011. [6] Rong L et al. (2022) CR;41(1):142. [7] George SL et al. (2020) EBioMedicine; 59:102971. [8] Bartholf-DeWitt S, et al. (2022) JCl Insight;7(17):e151583.

Return to Projects list



Identifying ploidy-dependent mitotic vulnerabilities during DNA damage repair and chromosome segregation ³ – Prof. Ulrike Gruneberg

Primary Supervisor: Prof. Ulrike Gruneberg Additional Supervisors: Prof. Monika Gullerova Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Faithful cell division ensures the correct segregation of the genetic material over multiple generations. Failure of this process may result in cells of abnormal ploidy, such as aneuploidy or tetraploidy, caused by whole-genome doubling. Ploidy changes have been implicated in enabling cancer evolution to take place and are thus considered a driving force for tumorigenesis. On the other hand, ploidy changes may impart specific vulnerabilities to tumour cells. Recent reports identified the spindle assembly checkpoint, the key quality control mechanism during mitosis, as well as DNA damage repair dealing with replication stress, as such vulnerabilities ¹⁻⁴. These insights could potentially be exploited for therapeutic use. We propose to examine the precise mechanisms and effects of disrupting DNA damage repair, the spindle assembly checkpoint and other mitotic control mechanisms in non-transformed and transformed diploid and tetraploid cells with the aim of identifying and characterising specific ploidy-dependent susceptibilities.

Research objectives

Tetraploidy and aneuploidy have both been shown to promote tumorigenesis ^{5,6}. To understand the molecular biology underpinning these properties, we will compare euploid non-transformed MCF10A breast and hTert-immortalised retinal epithelial cells (hTert-RPE1) with near-diploid tumour cells HCT116 and highly aneuploid tumour HeLa cells, as well as tetraploid derivatives of hTert-RPE1, MCF10A and HCT116. These cell lines constitute an accepted system to probe the relationship between ploidy and dependence on mitotic control mechanisms ². Tetraploid cells will be generated by induction of cytokinesis failure and FAC sorting for tetraploid DNA content, as already established in the lab. Recent research in both yeast and mammalian cells has shown that tetraploid and aneuploid cells are more sensitive to replication stress during S-phase as well as mitotic aberrations during the cell division process, giving rise to the idea that these vulnerabilities could be exploited therapeutically ²⁻⁴.

Together with our collaborator Monika Gullerova, we will use our combined expertise in spindle assembly checkpoint and DNA damage repair analysis to carry out a targeted comparative analysis of perturbing these processes in cells of different ploidies with the aim of identifying disturbances which affect aneuploid or tetraploid cells more than their euploid counterparts. In particular, our previous research in the Gruneberg lab into the regulatory roles of distinct kinase-phosphatase modules at different mitotic transitions is likely to identify experimental situations which affect aneuploid cells more negatively than euploid cells ⁷⁻¹⁰. To characterise these situations, we will compare the sensitivity of cell lines with different ploidies to different phosphatase depletions/degron-tags (siPP1 & PP1^{dTag}, siPP2A-B56, siPP2A-B55) and analyse timing and success of cell cycle progression, error correction proficiency and spindle assembly checkpoint competence using established assays. For DNA damage repair analysis, we will test the repair competence of cells with different ploidies using various experimental approaches such as non-homologous-end-joining and homologous recombination reporter cell lines, comet assay, clonogenics and gH2AX clearance ^{11,12}. Any differences between aneuploid and diploid cells will be followed up by a detailed analysis of the molecular biology underpinning these, using fluorescent markers that we have already in the lab, including the key spindle checkpoint kinase MPS1, the attached-kinetochore marker astrin, and fluorescently-tagged cyclin B as a general marker of cell cycle progression, to assess the success of the different stages of chromosome segregation.

Translational potential

Aneuploidy and tetraploidy have long been recognised as drivers of tumorigenesis. As these are states that are largely specific to cancer cells, there is an impetus to use the vulnerabilities that are created by these abnormal ploidies to specifically eradicate tumour cells. We postulate that specific interference with DNA damage repair or alterations to the kinase-phosphatase balance orchestrating mitotic progression will be lethal to aneuploid tumour cells but not their euploid untransformed counterparts. Our characterisation of the effect of these disturbances on cells with abnormal ploidy will thus be of significant therapeutic value.

Training opportunities

Students will receive comprehensive training in molecular biology, classical protein biochemistry, assays to analyse DNA damage repair and spindle assembly checkpoint proficiency, cutting edge fixed and live cell imaging techniques as well as quantitative image analysis methods.

References

Passerini, V., and Storchova, Z. (2016). Too much to handle - how gaining chromosomes destabilizes the genome. Cell Cycle 15, 2867-2874. 10.1080/15384101.2016.1231285.

2. Cohen-Sharir, Y., McFarland, J.M., Abdusamad, M., Marquis, C., Bernhard, S.V., Kazachkova, M., Tang, H., Ippolito, M.R., Laue, K., Zerbib, J., et al. (2021). Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature *590*, 486-491. 10.1038/s41586-020-03114-6.

3. Quinton, R.J., DiDomizio, A., Vittoria, M.A., Kotynkova, K., Ticas, C.J., Patel, S., Koga, Y., Vakhshoorzadeh, J., Hermance, N., Kuroda, T.S., et al. (2021). Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature *590*, 492-497. 10.1038/s41586-020-03133-3.

4. Gemble, S., Wardenaar, R., Keuper, K., Srivastava, N., Nano, M., Mace, A.S., Tijhuis, A.E., Bernhard, S.V., Spierings, D.C.J., Simon, A., et al. (2022). Genetic instability from a single S phase after whole-genome duplication. Nature *604*, 146-151. 10.1038/s41586-022-04578-4.

5. Knouse, K.A., Davoli, T., Elledge, S.J., and Amon, A. (2017). Aneuploidy in Cancer: Seq-ing Answers to Old Questions. Annu Rev Canc Biol *1*, 335-354. 10.1146/annurev-cancerbio-042616-072231.

6. Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E.V., Bronson, R.T., and Pellman, D. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature *437*, 1043-1047. 10.1038/nature04217.

7. Hayward, D., Roberts, E., and Gruneberg, U. (2022). MPS1 localizes to end-on microtubule-attached kinetochores to promote microtubule release. Curr Biol *32*, 5200-5208 e5208. 10.1016/j.cub.2022.10.047.

8. Hayward, D., Bancroft, J., Mangat, D., Alfonso-Perez, T., Dugdale, S., McCarthy, J., Barr, F.A., and Gruneberg, U. (2019). Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56. J Cell Biol *218*, 3188-3199. 10.1083/jcb.201905026.

9. Hayward, D., Alfonso-Perez, T., and Gruneberg, U. (2019). Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett *593*, 2889-2907. 10.1002/1873-3468.13591.

10. Hayward, D., Alfonso-Perez, T., Cundell, M.J., Hopkins, M., Holder, J., Bancroft, J., Hutter, L.H., Novak, B., Barr, F.A., and Gruneberg, U. (2019). CDK1-CCNB1 creates a spindle checkpoint-permissive state by enabling MPS1 kinetochore localization. J Cell Biol *218*, 1182-1199. 10.1083/jcb.201808014.

11. Ketley, R.F., Battistini, F., Alagia, A., Mondielli, C., Iehl, F., Balikci, E., Huber, K.V.M., Orozco, M., and Gullerova, M. (2022). DNA double-strand break-derived RNA drives TIRR/53BP1 complex dissociation. Cell Rep *41*, 111526. 10.1016/j.celrep.2022.111526.

12. Burger, K., Schlackow, M., and Gullerova, M. (2019). Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res *47*, 3467-3484. 10.1093/nar/gkz024.

8. Spatial resolution of the human transcriptome during gastrointestinal tumorigenesis – ^{3,4} Dr. Francesco Boccellato

Primary Supervisor: Dr. Francesco Boccellato Additional Supervisors: Jan Bornschein Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

The gastrointestinal mucosa is organised in invaginations called glands in the stomach and crypts in the colon. How cancer arises from these invaginations is still unclear, but before cellular transformation occurs, the analysis of early mucosal aberrations in biopsies enables the detection of pre-cancerous conditions. Tissue response to stress, toxic dietary compounds, infections and inflammation, might alter the microenvironment posing the mucosa at risk of malignant transformation. We plan to analyse pre-cancerous conditions of the gastrointestinal tract to understand why they have a different tissue configuration compared to the normal.

Growth factors and morphogens shape the tissues during embryogenesis, and they are probably responsible of its homeostasis in the adult. We hypothesize than an alteration of the morphogen signalling microenvironment is the driver for the altered configuration of the tissue observed in pre-cancerous conditions of the gastrointestinal tract. The project's main objective is to use spatial transcriptomics to map the molecular triggers dictating morphological and cellular composition changes in the gastro-intestinal diseased mucosa. We will focus on the detection of morphogens and growth factors involved in cellular regeneration and differentiation, and we plan to harness our established mucosoid cultures, an evolution of organoids, to test the different growth factors combinations *in vitro*.

We use fixed samples of gastrointestinal biopsies from healthy individuals and from patients with pre-cancerous conditions or lesions. We are particularly interested in the etiogenesis of oesophageal, stomach and colorectal cancer. Three patients per condition will be analysed using the GeoMX whole genome spatial transcriptomic profiling provided by NanoString[®]. Transcriptomic data from this experiment are analysed to extract information about the expression of morphogenic signals, their receptors and downstream target genes. The activity of morphogenic pathways is tested on mucosoid cultures using synthetic morphogens and corresponding pathway inhibitors. Upon stimulation with morphogens, cells in the mucosoids cultures can regenerate and differentiate into the different stomach lineages as they do inside the organ. Mapping growth factors directly in the original human tissue and testing their function on relevant human-derived cultures promises to be a robust strategy to understand mechanisms of carcinogenesis

Research Objectives

Aim1) Generating a spatial map of the morphogenic signals during gastrointestinal disease progression.

We will profile the transcriptome of different parallel regions of healthy and pre-cancerous gastrointestinal mucosa (eg: Barrett's oesophagus, intestinal metaplasia, colon polyps). Our clinical collaborator and co-supervisor Dr. Jan Bornschein is involved in the identification of the patients for this project. Prof Fadi Issa, runs Nanostring at the department of surgical science at University of Oxford. We will focus on the detection of genes related to morphogen signalling pathways involved in cellular regeneration and differentiation. The expression of these genes, receptors and related transcription factors will be mapped in the different region of interest of the epithelium, stroma and cell of the immune system. The comparative analysis of the transcriptomic profiles will be performed using the software "SignaLink3" [1] to identify the gene interactome and the putative pathways crosstalk. The software was developed by T. Korcsmaros, a collaborator in this project.

Aim II) Assessing the role of morphogens in driving epithelial differentiation, regeneration and proliferation.

The pre-cancerous conditions of the gastrointestinal mucosa are characterised by a different morphology but also by a disbalance in the cell population lineages. The morphogen signalling ligands identified in Aim 1 will be tested on mucosoid cultures originated from the same biopsies. Mucosoids are a patented [2] development of the organoid cultures; cells are cultivated in a monolayer forming an epithelial barrier which is very similar to the gastrointestinal epithelium [3, 4]. Cells within the mucosoids can differentiate upon stimulation [5]. By adding ligands or pathway inhibitors in the cultivation cocktail of the mucosoid cultures it is possible to determine their role in epithelial cell regeneration, proliferation and differentiation using different published functional or biochemical assays [3, 5]

Translational potential

Although there is a strong focus on understanding the microenvironment of cancer and the contribution of neighbouring non-transformed cells to the disease, little is known about the microenvironment of pre-cancerous conditions, and an unbiased approach to map all the morphogens has never been attempted. We aim to find dysregulations in specific morphogen signalling cascades that are predictive for disease progression. The gold standard for the detection pre-cancerous conditions is endoscopy and tissue imaging. Alternative serological analysis is accurate, but have a low sensitivity. A combination of ligands or proteins involved in morphogen signalling pathways could be use as surrogate of those conditions to develop diagnostic tests for pre-cancerous conditions and to predict risk of progression

Training opportunities

Day-to-day supervision and training will be provided by Francesco Boccellato and from post-docs in the lab. The student will have the opportunity to learn cutting edge technologies such as spatial-transcriptomic and organoid and mucosoid cultures. We expect the student to become proficient into data analysis and we will support this by encouraging the attendance to bioinformatic courses. Imaging with confocal microscopies and standard biochemical assays are also part of the basic training.

References

1. Csabai, L.; Fazekas, D.; Kadlecsik, T.; Szalay-Bekő, M.; Bohár, B.; Madgwick, M.; Módos, D.; Ölbei, M.; Gul, L.; Sudhakar, P.; Kubisch, J.; Oyeyemi, O. J.; Liska, O.; Ari, E.; Hotzi, B.; Billes, V. A.; Molnár, E.; Földvári-Nagy, L.; Csályi, K.; Demeter, A.; Pápai, N.; Koltai, M.; Varga, M.; Lenti, K.; Farkas, I. J.; Türei, D.; Csermely, P.; Vellai, T.; Korcsmáros, T., SignaLink3: a multi-layered resource to uncover tissue-specific signaling networks. *Nucleic acids research* **2022**, 50, (D1), D701-d709.

2. Boccellato, F.; Meyer, T. F. Generation, proliferation and expansion of epithelial cells from primary tissue into mucosoid cultures. 2019, 2019.

3. Boccellato, F.; Woelffling, S.; Imai-Matsushima, A.; Sanchez, G.; Goosmann, C.; Schmid, M.; Berger, H.; Morey, P.; Denecke, C.; Ordemann, J.; Meyer, T. F., Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. *Gut* **2019**, 68, (3), 400-413.

4. Sepe, L. P.; Hartl, K.; Iftekhar, A.; Berger, H.; Kumar, N.; Goosmann, C.; Chopra, S.; Schmidt, S. C.; Gurumurthy, R. K.; Meyer, T. F.; Boccellato, F., Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. *mBio* **2020**, 11, (5).

5. Wölffling, S.; Daddi, A. A.; Imai-Matsushima, A.; Fritsche, K.; Goosmann, C.; Traulsen, J.; Lisle, R.; Schmid, M.; Reines-Benassar, M. D. M.; Pfannkuch, L.; Brinkmann, V.; Bornschein, J.; Malfertheiner, P.; Ordemann, J.; Link, A.; Meyer, T. F.; Boccellato, F., EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. *Gastroenterology* **2021**, 161, (2), 623-636.e16.

9. ADP-ribosyl hydrolase as a biomarker for PARP inhibitor sensitivity/resistance ^{3,4} – Prof. Ivan Ahel

Primary Supervisor: Prof. Ivan Ahel Additional Supervisors: Prof. Ahmed Ahmed Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

To protect the genome from damage organisms have evolved a cellular defence mechanisms termed the DNA damage response (DDR). The DDR includes a diverse set of signal transduction pathways and effector proteins that act to sense DNA lesions and effectively repair the damage, limiting the propagation of genomic instability. Exploiting DDR pathways to specifically target and kill cancer cells has become an attractive therapeutic avenue within cancer research. This is exemplified by the synthetic lethal interaction between PARP inhibition and BRCA1 or BRCA2-deficient tumours¹. Ivan Ahel (co-supervisor on this project) laboratory recently identified HPF1 protein as a novel interactor and critical regulator of PARP1 ADP-ribosylation activity upon DNA damage². Functionally, HPF1 suppresses DNA damage-induced hyper auto-modification of PARP1 and promotes in trans ADP-ribosylation of histones and many other proteins involved in regulation of genome stability. They further demonstrated that HPF1 is a critical specificity factor that allows modification of target proteins by PARP1 on serine residues (Ser-ADPr)^{3,4}. Crucially, the work also identified ARH3 as a hydrolase which specifically removes Ser-ADPr⁵ and further showed that Ser-ADPr is the major form of ADP-ribosylation following DNA damage⁶. Taken together, the insights surrounding Ser-ADPr open a large, exciting, and novel area of research into the fundamental understanding of the pathways regulated by this modification. Strikingly, our recent data show that ARH3 knockout in model cell lines associates with PARP inhibitor (PARPi) resistance, while ARH3 overexpression is associated with PARPi sensitivity⁷. Based on these results, we hypothesize that ARH3 activity and protein levels affect sensitivity to PARPi, thus representing; i) a predictor for the success of these therapies and, ii) a novel target for further drug development. Currently, PARP inhibitors are used to treat ovarian cancer and several other cancers, and we therefore propose to test the hypothesis that ARH3 expression might be a useful diagnostic tool with which to stratify cancer patients into sub-groups that will be sensitive/resistant to PARPi treatment with a particular focus on ovarian cancer. The mechanism of sensitivity/resistance of cells with deregulated ARH3 expression cells to PARPi is unknown, and elucidating this mechanism will be another goal of this proposed work.

Research objectives

Objective 1. Characterise the effect of ARH3 under- and overexpression in a series of model and primary cancer cell lines on PARP inhibitor sensitivity/resistance. We will collect and test a variety of ovarian cancer cell lines, profiling them for ARH3 protein expression levels and then treating with several different PARPi of varying PARP-trapping capabilities (olaparib, talazoparib, veliparib). To determine the impact of ARH3 protein levels on PARPi vulnerability, we will not only assess drug sensitivity and levels of PARP1, PARG, and ARH3 across a panel of ovarian cancer cell lines, but also assess the impact of systemically varying ARH3 by knockdown, knock out and inducible overexpression in HGSOC lines of defined genotype, including Ovcar8 (BRCA1/2 wt, PARPi resistant), PEO1 (BRCA2-mutant, PARPi sensitive), Kuramochi (BRCA2-mutant, PARPi partially sensitive) and COV362 (BRCA1-mutant, PARPi sensitive). Rescue experiments with wild type vs. catalytically inactive ARH3 will assess the suitability of ARH3 as a target for the development of inhibitors.

Objective 2. To determine the frequency of ARH3 gene alterations in a larger set of HGSOC samples, we will: i) interrogate data of an ongoing whole exome sequencing study of 504 ovarian cancers searching for ARH3 and PARG copy number alterations and mutations; and ii) perform semi-quantitative detection of ARH3, as well as of PARG, PARP1 and PAR, by immunohistochemistry (IHC) on two independent sets of tissue microarrays (TMAs) containing a total of 1200 ovarian cancers. To augment these analyses, which will be limited by the small number of tumors treated with PARPi, we will also evaluate levels of ARH3, PARG, PARP1 and PAR in patient-derived xenograft (PDX) models that have been assayed for response to single-agent PARPi, including ones that have a high HRD score but did not respond. This objective will be performed in co-supervisor (Prof Ahmed Ahmed) laboratory at the Nuffield Department of Women's & Reproductive Health, University of Oxford.

Objective 3. Elucidating the mechanistic basis for the sensitivity/resistance of cells with deregulated ARH3 expression cells to PARPi (modulation of the PARP-trapping, regulation of DNA repair pathway choice, regulation of the chromatin structure/epigenetic marks). For these studies we will use largely cell biology/biochemical and genomics approaches.

Translational potential

Our data suggest that ARH3 protein expression levels in cancer patients might be a marker that confers sensitivity/resistance of the tumour to PARPi, providing a rationale for using PARPi for certain patients. In longer term, understanding the mechanisms of DNA repair and PARPi resistance through studies of ARH3 protein, may reveal new, unexpected avenues for treatments in the future.

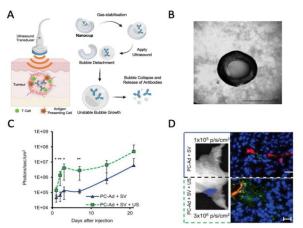
Training opportunities

The student will have opportunities to train in diverse set of methods including cell biology/cell culture approaches for structure/function analyses, well-established cell survival assays that we be applicable for wide range of cell toxicity studies, immunohistochemistry methods and patient-derived xenograft (PDX) models.

References

- 1. Bryant et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. *Nature* 434, 913-917.
- 2. Gibbs-Seymour, I., Fontana, P., Rack, J.G., and Ahel, I. (2016) HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity. *Mol Cell* 62, 432-442.
- Bonfiglio, J.J., Fontana, P., Zhang, Q., Colby, T., Gibbs-Seymour, I., Atanassov, I., Bartlett, E.J., Zaja, R., Ahel, I.*, and Matic, I.* (2017) Serine ADP-ribosylation depends on HPF1. *Mol Cell* 65, 932-940. (*Corresponding authors)
- 4. Suskiewicz, M.J., Zobel, F., Ogden, T.E., Fontana, P., Ariza, A., Yang, J., Zhu, K., Bracken, L., Hawthorne, W.J., Ahel, D., Neuhaus, D., and Ahel, I. (2020) HPF1 completes the PARP active site for DNA-damage induced ADP-ribosylation. *Nature* 579, 598-602.
- 5. Fontana, P., Bonfiglio, J.J., Palazzo, .L, Bartlett, E., Matic, I., and Ahel, I. (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. *Elife* Jun 26;6. pii: e28533.
- 6. Palazzo, L., Leidecker, O., Prokhorova, E., Dauben, H., Matic, I., and Ahel, I. (2018) Serine is the major residue for ADP-ribosylation upon DNA damage. Elife Feb 26;7. pii: e34334.
- Prokhorova, E., Zobel, F., Smith, R., Zentout, S., Gibbs-Seymour, I., Schützenhofer, K., Peters, A., Groslambert, J., Zorzini, V., Agnew, T., Brognard, J., Nielsen, M.L., Ahel, D., Huet, S., Suskiewicz, M.J., and Ahel, I. (2021) Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat Commun 12, 4055.

10. Improving Immunotherapeutic Efficacy in Colorectal Cancer Using Ultrasound-activated Nanoparticles and Image-guided Drug Delivery ^{3,4} – Prof. Tim Elliot


Primary Supervisor: Prof. Tim Elliot

Additional Supervisors: Associate Prof. Robert Carlisle

Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

Cancer immunotherapy using immune checkpoint inhibitors (ICI) targeting the programmed cell death-1 receptor (PD-1) and its ligand (PD-L1) are routinely used in clinic for treating solid tumours¹. However, >95% of colorectal cancers are immunologically 'cold', microsatellite stable and DNA mismatch repair proficient tumours that do not currently benefit from immunotherapy². Treatment failure is often due to factors e.g. low neoantigen burden, loss of MHC-I, dysfunctional antigen processing and presentation, lack of tumour-infiltrating lymphocytes and local immunosuppression. Furthermore, the presence of dense stroma and dysregulated tumour blood vessels can serve as physical and functional barriers to drug

delivery. There is an unmet need for the development of therapeutic and image-guided approaches to enhance drug delivery into and throughout tumours and transform a 'cold' immune-excluded tumour into a 'hot' immune-inflamed tumour.

Figure 1. Ultrasound-activated nanoparticles for delivery of drugs.

(A) Schematic diagram for ultrasound-guided delivery of nanoparticle encapsulated treatment antibodies. (B) TEM of novel ultrasound-responsive solid particles manufactured using immunostimulatory proteins. (C) and (D) Improved delivery of oncolytic adenoviruses ('PC-Ad') using microbubbles ('SV') and ultrasound. Green (virus), red (blood vessel), blue (DAPI). Images were adapted from [5] and [7].

Focused ultrasound has emerged as a promising approach for immuno-modulation of tumours through thermal or mechanical perturbation³. Ultrasound-mediated cavitation using novel, biocompatible nanoparticles has been used to enhance the delivery of chemotherapy and oncolytic viruses into tumours^{4,5} (Figure 1). Ultrasound itself is a relatively low-cost system used in clinical imaging of soft tissues, tissue stiffness and tumour blood flow, and can be used for real-time monitoring of drug delivery. The Elliott Group at the Centre for Immuno-Oncology investigates the mechanisms of antigen processing and presentation involved in T cell response to cancer and during immunotherapy using biochemical, computational, and physical science methods. The Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL) at the Institute of Biomedical Engineering specialises in the development of novel ultrasound-activated nanoparticles for image-guided drug delivery. This multidisciplinary project is a partnership between immuno-oncology and biomedical engineering.

Research objectives

The aim of this project is to develop and validate ultrasound-activated microbubbles (MB) and solid sonosensitive particles (SP) to actively transport and enhance the distribution of ICI in tumours via mechanical cavitation. The treatment efficacy of ultrasound-activated cavitation agents as propellants or vehicles for ICI delivery and the mechanistic effects of cavitation on antigen presentation, T cell avidity and function will be investigated. Preclinical colorectal cancer models already comprehensively characterised by the Elliot group will be used^{6,7}.

<u>Work Package 1</u>: Development of ultrasound-activated nanoparticles for targeted drug delivery

PD-1 and/or PD-L1 monoclonal antibodies of different doses will be co-delivered with SP or formulated into SP or MB. The physicochemical properties of the SP and MB formulations, doses of PD-1/PD-L1 monoclonal antibodies delivered with, or formulated into, each cavitation agent and the acoustic parameters for tumour delivery will be optimised, and correlated to the tumour volume, microvessel density and stromal thickness. For microscopic evaluation of the drug spatial distribution, PD-1 and/or PD-L1 monoclonal antibodies will be bioconjugated with amine-reactive reagents for fluorescent labelling with near infrared dyes. *WP1 will be performed in collaboration with Prof. Constantin Coussios and Prof. Eleanor Stride. Work Package 2: Establishment of a preclinical colorectal cancer model for novel treatment and mechanistic studies*

OXFORD

The BALB/c mouse model of colorectal carcinoma, CT26 is a microsatellite stable and DNA mismatch repair proficient tumour which shares molecular features with aggressive, undifferentiated, and refractory human colorectal cancer. CT26 is one of the most extensively investigated syngeneic tumour model in preclinical studies and has been used to validate most immunotherapeutics currently in the clinic or under clinical trials, with >500 studies in literature. SP and MB formulations with optimised PD-1 or PD-L1 doses will be administered into mice bearing subcutaneous CT26 tumours and actively delivered into the tumours via ultrasound-mediated cavitation. Tumour growth monitoring will be conducted to determine treatment efficacy and response classification into progressors or regressors. Tumours and secondary lymphoid organs will be harvested at the study endpoint for functional analyses using multiparametric flow cytometry, transcriptomics, immunofluorescence staining and multiplex imaging. In particular, biomarkers related to MHC Class I antigen presentation, antigen processing e.g. tapasin and calreticulin, CD8⁺ and CD4⁺ T cell, antigen-presenting cells such as dendritic cells, immunosuppressive cells, cancer-associated fibroblasts, extracellular matrix remodelling, vascular inflammation and tumour hypoxia will be examined closely. Experiments will be designed to distinguish the immunological effects of cavitation alone from the effects of enhanced antibody delivery instigated by cavitation. *WP2 will be conducted in collaboration with Dr. Doreen Lau and A/Prof. Joanna Hester.*

Work Package 3: Understanding the effects of novel treatment on antigen presentation and T cell dynamics in cancer

The mechanical and immuno-modulatory effects of the optimised nanoparticle formulation and focused ultrasound on antigen presentation and T cell dynamics in cancer will be examined with immuno-profiling, biophysical measurements and live imaging. Tumour antigen-specific CD8⁺ T cells of high versus low functional avidity will be identified based on pMHC tetramer staining and image-based biophysical measurements of overall pMHC:TCR binding strength using acoustic force spectroscopy. These T cell populations will be fluorescently labelled and adoptively transferred into CT26 mice prior to treatment with this novel approach. Non-invasive imaging of tumour stiffness using ultrasound elastography and vascular permeability and perfusion using contrast-enhanced ultrasound will be conducted before and after treatment to derive clinically relevant imaging biomarkers of stromal and vascular response to treatment. Imaging at the single-cell level will be performed using two-photon microscopy to examine the migration and cellular kinetics of tumour-specific T cells across physical barriers (tumour stroma and vasculature). This will be conducted on vibratome-sliced tumours in perfusion chambers with dye-labelling of the tumour blood vessels for visualisation and second harmonic generation imaging of the stromal collagen fibres at the tumour invasive margin. Image processing and analysis of the fluorescent T cell tracks, velocities, and spatial confinement within different tumour compartments (peritumoral versus intratumoral), T cell spatial distribution and distance to tumour cells, tumour stroma and blood vessels will be conducted⁸. *WP3 will be done in collaboration with Dr. Doreen Lau and Prof. Eleanor Stride*.

Translational potential

This work will develop and validate novel ultrasound-activated nanoparticles for image-guided delivery of ICI in preclinical colorectal cancer models. The aim is to investigate whether drug penetration can be optimised using this approach and better understand its mechanistic effects on antigen presentation, T cell avidity and function in tumours. An Oxford spin-out company, OxSonics Therapeutics, in which a similar cavitation technology ('Nanocups') is based, has already reached clinical-stage and is currently in Phase I/II clinical trial for ultrasound-guided delivery of anti-cancer agents in metastatic colorectal cancer patients. The difference in the present proposal is the introduction of a sonosensitive particle that is capable of not only enhancing antibody delivery and distribution, but also in promoting the local immune response through the introduction of immuno-stimulatory proteins adjacent to the cavitation process. A long-term plan for this project would be to translate the technology and discoveries into clinics to optimise the efficacy of immunotherapeutics.

Training opportunities

This project is ideally suited for non-clinical candidates with a background in pharmacology, biomedical sciences or bioengineering and is also suitable for clinical candidates wishing to gain research experience in preclinical immunotherapy modelling and novel drug delivery in an interdisciplinary setting. Training on chemical engineering, tumour immunology, cellular imaging with two-photon microscopy and acoustic force spectroscopy, as well as the use of therapeutic and **diagnostic** imaging ultrasound will be provided. More general research, communication, teaching, innovation, and career development skills training will be given by the Medical Sciences Division.

References:

1.<u>Ribas, A.</u>, and <u>Wolchok, J.D.</u> (2018). Cancer immunotherapy using checkpoint blockade. Science (1979) *359*, 1350–1355. 10.1126/science.aar4060.

2.<u>Ganesh, K.</u>, Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., and Diaz, L.A. (2019). Immunotherapy in colorectal cancer: rationale, challenges and potential. Nature Reviews Gastroenterology & Hepatology *16*, 361–375. 10.1038/s41575-019-0126-x.

3. <u>Joiner, J.B.</u>, Pylayeva-Gupta, Y., and Dayton, P.A. (2020). Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. The Journal of Immunology *205*, 2327–2341. 10.4049/jimmunol.1901430.

4. <u>Grundy, M.</u>, Bau, L., Hill, C., Paverd, C., Mannaris, C., Kwan, J., Crake, C., Coviello, C., Coussios, C., and Carlisle, R. (2021). Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles. Nanomedicine *16*, 37–50. 10.2217/nnm-2020-0263.

5. <u>Carlisle, R.</u>, Choi, J., Bazan-Peregrino, M., Laga, R., Subr, V., Kostka, L., Ulbrich, K., Coussios, C.-C., and Seymour, L.W. (2013). Enhanced Tumor Uptake and Penetration of Virotherapy Using Polymer Stealthing and Focused Ultrasound. JNCI: Journal of the National Cancer Institute *105*, 1701–1710. 10.1093/jnci/djt305.

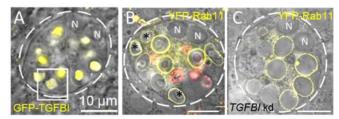
6. <u>Sugiyarto, G.</u>, Prossor, D., Dadas, O., Arcia-Anaya, E.D., Elliott, T., and James, E. (2021). Protective low-avidity antitumour CD8+ T cells are selectively attenuated by regulatory T cells. Immunotherapy Advances *1*. 10.1093/immadv/ltaa001.

7. <u>Sugiyarto, G.</u>, <u>Lau, D.</u>, <u>Hill, S.L.</u>, Arcia-Anaya, E.D., Boulanger, D.S., Parkes, E.E., James, E., and Elliott, T. (2023). Reactivation of low avidity tumor-specific CD8+ T cells associates with immunotherapeutic efficacy of anti-PD-1. Under Review.

8. <u>Lau, D.</u>, Garçon, F., Chandra, A., Lechermann, L.M., Aloj, L., Chilvers, E.R., Corrie, P.G., Okkenhaug, K., and Gallagher, F.A. (2020). Intravital Imaging of Adoptive T-Cell Morphology, Mobility and Trafficking Following Immune Checkpoint Inhibition in a Mouse Melanoma Model. Front Immunol *11*, 1514. 10.3389/fimmu.2020.01514.

Uncovering the regulation and functions of supermeres in colorectal cancer^{-3,4} – Prof. Clive Wilson

Primary Supervisor: Prof. Clive Wilson **Additional Supervisors**: Prof. Adrian Harris and Prof. Chris Cunningham **Eligibility:** Tracks 3 & 4 eligible to apply for this project.


Abstract

Defective communication between cells is a key factor in cancer formation and progression. Traditionally, such signals are considered to involve single molecules like growth factors, but recently, more sophisticated multimolecular assemblies, such as extracellular vesicles (EVs) and non-vesicular nanoparticles, which can harbour a wide range of activities, have emerged as alternative mediators. Supermeres are a new type of protein:RNA complex produced by many cancer cell types¹. They are enriched with cargos that are upregulated in a wide range of cancers, for example, glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2. Most extracellular RNA is reported to be associated with supermeres and not EVs. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and reduce hepatic lipids and glycogen in vivo. However, the cellular origin of supermeres and their links with other secreted multimolecular complexes are unknown, hindering their detailed analysis. We previously used a Drosophila prostate-like cell with highly enlarged endosomal compartments to unpick the biology of exosomes, small EVs generated in these compartments. This work revealed a previously unidentified, evolutionarily conserved exosome subtype called Rab11a-exosomes made in recycling endosomes, which appear to control cancer progression². Although they represent only a small fraction of secreted EVs, they are major mediators of several EV-associated functions³. We have now identified protein aggregates in our fly system with a similar protein signature to human supermeres, shown that their biogenesis is interlinked with Rab11a-exosome formation, and identified genetic manipulations of highly conserved molecules that block their assembly³⁻⁶ (and see below). We hypothesise that human supermeres are generated in recycling endosomes via similar mechanisms to those in the fly and that these compartments play a central role in cancer cell communication. In this project, the student will test this idea in colorectal cancer (CRC) cells, where we first identified Rab11aexosomes. Ongoing molecularly stratified trials and collection of serial blood samples from patients will allow the specific functions of supermeres and their potential as biomarkers to be tested. The student will spearhead the analysis of this new form of cancer cell signalling, working with basic scientists and clinicians who have diverse skills and expertise.

Research objectives

The project has four research objectives and proposed outcomes:

2.1 Determine the role of cellular stress responses in supermere release: In our fly model, supermere-like structures coalesce in Rab11a-positive recycling endosomes to form very large central dense-core granules³⁻⁶. Like human supermeres¹, TGFβ-induced (TGFBI, a highly conserved secreted molecule) is the most abundant protein in these complexes (Fig. 1A), which are also enriched in other supermere cargos, such as GPI-anchored proteins, proteases⁶ and cleaved membrane proteins, like Amyloid Precursor Protein (APP). Our studies reveal that complex formation is dependent on TGFBI (Fig. 1) and Rab11a-exosomes³⁻⁵. In recent unpublished findings, we have shown that other oncogenic proteins control this process, and that APP-like proteins play a key role in separating Rab11a-exosomes from these aggregates. This separation regulates the activities of both the exosomes and the aggregates.

Fig. 1. TGFBI is a key regulator of protein aggregation in flies. A. GFP fusion to *Drosophila* TGFBI expressed from the endogenous gene is expressed specifically in densecore granules (yellow circles) in large compartments (one outlined by square) in a specific secretory cell (outlined with dashed ellipse). **B.** Compartments containing these cores (some labelled with *) are marked by recycling endosomal Rab11. **C.** *TGFBI* kd blocks aggregation, but compartments retain Rab11 identity. N = nuclei. Scale bar = 10 µm.

To determine whether human supermeres are selectively produced in Rab11a-compartments, we will test whether supermere release is affected in CRC cell lines, eg. HCT116, SW620, by stresses that promote Rab11a-exosome secretion, eg. nutrient depletion, hypoxia, drugs that block growth factor signalling. Supermeres will be isolated by ultracentrifugation; if they are abundant in non-stressed, as well as stressed, cells, their composition will be assessed by western/miRNA analysis, to determine whether, like exosomes, their structure is altered by their origin.

Proposed outcome: Determine the origin and composition of supermeres generated under different stress conditions.

2.2 Identify regulators of supermere biogenesis: We will genetically manipulate CRC cells under both nutrient-depleted and - replete conditions, knocking down genes involved in the formation of supermere-like structures in flies, eg. *TGFBI*, *ESCRT*s (to suppress exosome biogenesis), etc, and test how supermere release is affected. Our current data suggest that *TGFBI* knockdown (kd) will selectively block supermere formation and this will change the activities of the cancer cell secretome; the resulting preparations, depleted of supermeres, will be analysed by proteomics and transcriptomics, to more fully determine, through a process of elimination, the composition of these structures.

Proposed outcome: Define mechanisms controlling supermere generation in CRC cells and identify specific supermere cargos.

2.3 Determine cancer-related functions of supermeres: Cancer supermeres are readily internalised within target cells and have multiple functions in metabolism and drug resistance¹. We will confirm this using supermere preparations from nutrient-depleted and -replete cells to determine whether supermere signalling changes under stress. We will also test the functions of conditioned medium from cells +/- nutrient-depletion, +/- kd (eg. *TGFBI* kd) that blocks supermere release to assess supermere function in the presence of other signals, eg. exosomes. We will include assays for metabolic changes¹, drug resistance¹, including oxaliplatin and 5FU, and effects on endothelial² and other stromal cells.

Proposed outcome: The functions of supermeres in the presence or absence of other signals will be defined.

2.4 Assess the therapeutic implications of supermeres in CRC patients: Recent unpublished studies indicate that some Rab11aexosome markers from CRC cell lines are detected in EV preparations from CRC patients' plasma and these may be differentially expressed in patients that respond differently to neoadjuvant chemoradiotherapy (nCRT). We will isolate supermeres from plasma of these and other patients, both pre- and post-therapy, and from blood-bank controls, confirming integrity after freeze-thaw, testing effects of different anticoagulants, etc; protein and miRNA content will be assessed in relation to therapeutic response.

Proposed outcome: These preliminary studies will assess whether supermeres carry biomarkers that relate to CRC or response to nCRT, and pave the way for more patient-focused studies to block supermere function in the future.

2.5 Academic value of research: Signalling by multimolecular complexes is emerging as a key, but poorly understood, mechanism by which normal and cancer cells can completely reprogramme target cells and their microenvironment. Wilson's lab has made a number of fundamental science discoveries that have opened up new ideas and approaches that allow the analysis for these processes. The group has a strong track record in discovery science with relevance to cancer biology²⁻⁷, then developing ideas translationally through collaborations (see **2.6**). The student will play a central role in taking a similar approach to characterise cancer supermeres.

2.6 Collaborations involved and how these will be facilitated by the award: Profs Adrian Harris and Clive Wilson, working with Assoc. Prof Deborah Goberdhan have a strong, long-standing track record of collaboration in tumour cell biology, in which *Drosophila* has informed cancer studies, eg [2,8]. Prof Chris Cunningham has collaborated with Goberdhan and Harris to study exosomes in CRC patients. This project brings these teams together to work in a completely new area, supermere biology, so that fundamental discoveries in flies can again be exploited in clinically related studies. The project will facilitate these interactions and increase the opportunities for subsequent translation.

Translational potential

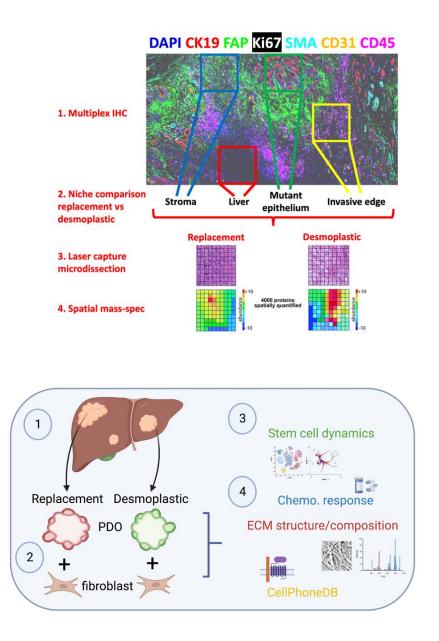
There is increasing evidence that multimolecular complexes, like supermeres, play central roles in cancer signalling, but defining those roles and assessing the translational potential requires advanced cell biological and genetic analysis. Our fly studies have opened up the opportunity to gauge the importance of supermere signalling in CRC and other cancers and determine the potential relevance of supermeres to early detection, patient stratification, prognosis and therapy, guided by the expertise of the collaborating supervisors (see **2.6** above). This project will provide the proof-of-principle work for future patient-focused, CRUK-funded studies in this area.

Training opportunities

The student will use a range of cancer-relevant techniques, including advanced cell culture and biochemical methods, cell biology, molecular genetics, high-resolution fluorescence imaging and bioinformatics. They will also develop expertise in cancer signalling, working at the interface of the collaborative environment we have established. Overall, this work should open up a new field in cancer biology, relevant to CRC and other cancers.

References

1. Zhang Q, et al. (2021) Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol. 23:1240-1254; 2. Fan S-J et al. (2020) Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J. 2020, e1030093 and N&V, van Niel G, Théry C. (2020) EMBO J. 2020, 39:e105119; 3. Marie, P.P., et al. (2023) Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J Extracell Vesicles 12:e12311; 4. Dar GH, et al. (2021) GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nat Commun. 12:6666; 5. Wells, A. et al. (2023) A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells. **BioRxiv:** https://www.biorxiv.org/content/10.1101/2023.04.04.535541v1. 6. Redhai S, et al. (2016) Regulation of dense-core granule replenishment by autocrine BMP signalling in Drosophila secondary cells. PLoS Genet. 12:e1006366; 7. Wainwright SM, et al. (2021) Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. PNAS 118:e2019622118; 8. Fan, S-J et al. (2016) PAT4 levels control amino acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene 35, 3004-15.



12. Deciphering spatial differences in Histopathological subtype of colorectal cancer liver metastasis (CRLM) ^{3,4} – Dr. Alex Gordon-Weeks

Primary Supervisor: Dr. Alex Gordon-Weeks Additional Supervisors: Prof. Simon Buczacki Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

CRLM occur in 50% of colorectal cancer patients and metastasis is the most common cause of colorectal cancer death. Surgical resection is considered the most successful treatment option, but recurrence occurs in up to 75% of patients within 5 years of attempted curative surgery. However, the outcomes following surgery are highly heterogenous. The strongest predictor of good versus poor outcome is the histological growth pattern. CRLM grow either in a replacement pattern (cancer cells at the invasive edge invade the hepatic parenchyma, co-opting hepatic vasculature) or a desmoplastic pattern (the invasive edge is characterised by a rim of inflammatory tissue consisting of fibroblasts and immune cells). The

Figure 1.

multiplexed

Through immunohistochemistry (GE Cell-Dive) of CRLM from replacement and desmoplastic morphologies, biologically distinct niches are defined. Niche cellular composition is compared between growth patterns to identify differences in cellular ecology. Niches of interest (those with significantly different cellular composition between growth patterns) are chosen for spatial proteomics to interrogate differences in cellcell communication networks and deposited ECMs within the niches. This approach will provide an enhanced understanding of the biological differences between the growth patterns identifying potential therapeutic targets.

Co-culture experiments combining CRLM patient-derived organoids (PDOs) of known histological subtype with primary liver fibroblasts will enable us to interrogate the cellular interactions that provide a basis for the multiplexed IHC and proteomics observations. Downstream analysis will include assessment of PDO morphology and stem cell dynamics through single-cell RNAseq and the growth pattern-specific fibroblast response through analysis of fibroblast-derived extracellular matrix. Here, pharmacological methods to switch plastically between pathological subtype will be explored.

replacement subtype has a significantly worse overall survival when compared with the desmoplastic subtype, but very little is known about the biological drivers linking histological growth pattern to outcome.

Research objectives

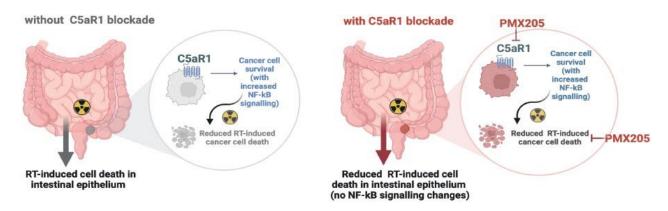
- 1. Perform mIHC and downstream image analysis on CRLM samples from patients with replacement and desmoplastic tumours.
- 2. Perform spatial proteomics on identified niches of interest within CRLM specimens and work with bioinformaticians within Professor Roman Fischer's group to analyse the data outputs.
- **3.** Identify replacement-dependent signalling mechanisms by comparing PDO-fibroblast co-cultures to identify tractable therapeutic targets for interchanging between histological subtypes.

Outcomes

- **1.** Gain a completely novel understanding of the CRLM cellular and proteomic microenvironment and understand for the first time how this differs between CRLM histological subtypes.
- **2.** Identify mechanisms through which histopathological subtype can be manipulated, providing a potential patient-tailored therapeutic solution.

Training opportunities

- 1. Patient-derived organoid isolation, organotypic culture, CRISPR-Cas9 gene editing, single cell sequencing of organoids and extracellular matrix biology (*Alex Gordon-Weeks/Simon Buczacki*)
- 2. Mass spectrometry, proteomics, metabolomics, data analytics/integration (Roman Fisher)^{1,2}
- 3. Multiplexed IHC performance and image analysis (Mark Coles)



13.Targeting innate immunity for intestinal injury recovery ⁻³ Dr. Monica Olcina

Primary Supervisor: Dr. Monica Olcina Additional Supervisors: Prof. Simon Buczacki Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Effective radiotherapy requires a suitable therapeutic window allowing appropriate tumour control without excessive toxicity to healthy tissues. Further improvements in our understanding of the mechanisms underlying treatment-induced normal tissue injury may lead to the identification of therapeutic targets that reduce normal tissue toxicity (ideally while simultaneously improving tumour response). We are interested in understanding the role of druggable innate immunity proteins that, when targeted, simultaneously improve tumour response and reduce normal tissue toxicity. Our previous work has identified complement receptor, C5aR1 as a key modulator of both tumour response and radiation-induced bowel toxicity ¹². While C5aR1 is well-known for its role in the immune compartment, we find that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumour-cell specific functions. We identify that C5aR1 primarily regulates cell fate in malignant cells, and that C5aR1 targeting results in increased NF-kB-dependent apoptosis specifically in tumours and not normal tissues. Crucially, targeting C5aR1 improves tumour response while reducing normal tissue toxicity following irradiation in the abdominal cavity (**Figure 1**)

Figure 1. Working model for the effects of C5aR1 and C5aR1 blockade on tumour and normal tissue radiation (RT) responses.

The aim of this project is to investigate the role of C5aR1 in modulating recovery from bowel injury, including the mechanisms underlying the intriguing opposite effect of C5a/C5aR1 signalling in regulating cell fate in transformed and untransformed cells. Alongside these mechanistic studies we propose collecting patient samples to identify potential predictive markers correlating with normal tissue toxicity (and treatment response). There is increasing interest in investigating complement products as potential biomarkers, especially given that as soluble factors they can be easily detected from patient plasma. We hypothesize that C5a/C5aR1 signalling is key to recovery from normal tissue injury as well as tumour response to cytotoxic treatment such as radiotherapy. Therefore, levels of C5a could be used to predict predisposition to treatment/associated toxicity. Using patient plasma samples, we will explore whether C5a, as well as a range of other markers, are correlated with acute normal tissue toxicity and tumour response in plasma patient samples collected in collaboration with Dr Muirhead (Consultant Clinical Oncologist, Oxford University Hospitals).

Research objectives

The overall objectives of this project are to: 1) investigate mechanisms underlying recovery following treatment-induced intestinal injury; 2) Identify potential plasma markers correlating with susceptibility to treatment-induced injury.

Mechanistically, the student will investigate whether C5a/C5aR1 signalling regulates stem cell regeneration/differentiation either directly or indirectly through modulation of an inflammatory milieu. Understanding how C5aR1 signalling regulates intestinal injury will help us understand how to apply future C5a/C5aR1 targeting

therapies to reduce treatment-related side effects.

Tools employed in this part of the project will include intestinal organoid culture (expertise available in the Buczacki lab). The student will also analyse spatial transcriptomics datasets from intestinal crypts of WT and C5aR1^{-/-} mice (generated by the Olcina lab). Any changes observed will be validated using techniques such as qPCR, immunohistochemistry and functional assays (including in in vivo models). The student will be based across both groups to enhance collaborative working.

To identify potential markers of response, we will initially focus on two patient groups: 1) patients receiving stardard of care chemoradiotherapy for the treatment of primary tumours in the pelvic region. 2) Patients receiving SABR to different sites for the treatment of primary or oligomestatatic disease (in the context of continued immune checkpoint treatment). This will allow us to investigate markers of toxicity at a variety of sites and in the context of combined immune checkpoint and radiotherapy treatments. Additional samples from patients undergoing other treatments could be considered in the future.

The Olcina lab has expertise in collecting and processing patient plasma samples. The collaboration with the Buczacki lab will be greatly facilitated by having a joint student pursuing this project. Having a co-supervisor with expertise in intestinal stem cell biology will be key to the success of this project. The collaboration with Dr Muirhead will be critical to allow streamline patient recruitment and sample collection.

Translational potential of the project

Widening the therapeutic window of cancer treatments through normal tissue protection would be a critical step in treatment dose escalation, potentially increasing the chances of tumour control and improved patient quality of life. For example, diarrhoea induced following irradiation delivered for the treatment of tumours in the pelvic region is a dose-limiting toxicity for some abdominal tumours. This study will investigate the mechanisms underlying the intriguing opposite effect of C5a/C5aR1 signalling in regulating cell fate in transformed and untransformed cells. Such mechanistic detail will be critical for the most effective use of future C5aR1 inhibitors to increase the therapeutic window of standard-of-care cancer treatments. This work also has the potential to uncover biomarkers of normal tissue injury which could indicate which patients are at higher risks of toxicity. While the project will build on our previous work focusing on radiotherapy we will investigate whether these mechanisms also apply in the context of other treatments, including immunotherapy.

Training Opportunities

By undertaking this project, the student will benefit from working in two laboratories with complementary expertise in innate immunity and radiobiology (Olcina) and intestinal stem cell biology (Buczacki). Furthermore, the student will have the opportunity to develop expertise in patient sample handling, collection and processing in addition to a range of laboratory techniques including how to work with organoid cultures, flow cytometry, immunohistochemistry and standard cell and molecular biology techniques. The student will also have access to spatial transcriptomics data and will receive training in how to analyse these data. The student will likely also acquire experience in using colorectal cancer models with clinically relevant molecular phenotypes while working both independently as well as in a team. Career development opportunities will be offered, including attendance of national and international conferences and transferable skills training courses.

The collaboration with Dr Muirhead will provide an opportunity for the student to spend time in a clinical setting with the wider radiotherapy multidisciplinary team as well as patients to learn about clinical oncology, all facilitating a truly translational aspect to the project.

References

- 1.Olcina MM, et al. Targeting C5aR1 Increases the Therapeutic Window of Radiotherapy. *bioRxiv* (2020) doi:https://doi.org/10.1101/2020.10.27.358036.
- 2.Beach C, et al. Innate immune receptor C5aR1 regulates cancer cell fate and can be targeted to improve radiotherapy in tumours with immunosuppressive microenvironments. *bioRxiv* (2023) doi:doi.org/10.1101/2023.01.10.521547.

Investigating an interplay between autoimmunity and cancer ³ – Prof. Xin Lu

Primary Supervisor: Prof. Xin Lu Additional Supervisors: Prof. Lynn Dustin Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Reinvigoration of host immune systems to eliminate tumours is one of the most exciting developments in cancer therapy. Despite of its potential to achieve durable responses, only small percentage of patients respond to immunochemotherapy. A key challenge in immune-oncology field is to understand why some patients benefited from the treatment whereas others failed. Oesophageal cancer is the 6th most common cancer and incidence is rising rapidly and mortality is close to incidence. A major clinical challenge is to develop novel and effective therapies for oesophageal cancer. In 2021 FDA approved checkpoint blockade-based immunotherapy to treat inoperable oesophageal adenocarcinomas in combination with chemotherapy. It is therefore timely to identify molecular mechanisms that confer tumour sensitivity or resistance to immunochemotherapy.

To address this challenge, we will take the full advantage of our recently reported Lud2015-005 trial of oesophageal adenocarcinoma patients treated with anti-PDL1 alone for four weeks and followed with immunochemotherapy (Carroll et al, Cancer Cell, July, 2023). It is increasingly clear that tumour-associated B cells and their antibody products contribute to improved clinical outcomes and successful immunotherapy in diverse tumours. Antibodies may target normal self-antigens, tumour neoantigens, oncogenic viral proteins, and even endogenous retroviral gene products (Ng et al, Nature, April 2023). In many cases, autoantibody levels correlate with clinical benefit in patients treated with checkpoint blockade-based immunotherapy (CBI) either alone or in combination with chemotherapy or radiotherapy. Notably, patients in the Lud2015 trial with clinical benefit also tend to produce increased numbers of autoantibodies. We have cloned hundreds of autoantibodies from a number of Lud2015-005 trial patients with known clinical outcomes. This project will build on our recently published results and preliminary findings. The objective of this proposal is to test whether the observed increased autoantibody production, a common feature of autoimmune diseases, is simply a side effect of increased immune activity, or if the autoantibodies produced by tumour-associated B cells may contribute to cancer cell killing including antibody dependent cell-mediated cytotoxicity (ADCC). In this project, we will use a combination of cutting-edge molecular assays, organoids, co-culture techniques and single-cell sequencing. This work will form an essential component of our overall aim to improve future treatment of gastrointestinal cancers and inform the broader implementation of immunotherapy.

Research objectives

Background: Reinvigoration of host immune systems to eliminate tumours is one of the most exciting developments in cancer therapy. Therapies are being developed to inhibit pathways that tumours use to evade immune surveillance. Antagonists of the CTLA-4 and PD-1/PD-L1 immune checkpoint pathways (i.e. antibodies to CTLA-4, PD-1 or PD-L1) unleash previously suppressed T-cells to eliminate tumour cells. This strategy - termed immune checkpoint targeting therapy (ICT) - has achieved durable overall survival in patients with highly metastatic tumours. However, only a subset of tumours responds to ICT and understanding why many are resistant to ICT and ICT-related combination therapies is a major scientific challenge. Examining cellular responses before and after interventions is the key to address this problem. In 2012 it caused ~400,000 deaths worldwide and incidence is rising rapidly. Mortality has remained closely related to oesophageal cancer incidence, with a 5 year survival of <15%, indicating that many oesophageal cancer cells are resistant to existing therapies.

<u>Objectives</u>: The overall aim is to identify molecular differences before and after immune checkpoint therapy and between responders and non-responders. The objective of this proposal is to test whether the observed increased

autoantibody production, a common feature of autoimmune diseases, is simply a read out of increased immune response or the autoantibodies produced by tumour associating B cells may positively contribute to cancer cell killing including antibody dependent cell-mediated cytotoxicity (ADCC).

<u>Approaches</u>: Key approaches include co-culture techniques, antibody-antigen interaction, organoid technology to explore interactions between tumour cells and immune cells. Single-cell sequencing may be used to dissect the cellular-level response to altered interactions. Additionally, autoantibody cloning, antibody-antigen interaction and antibody dependent cell-mediated cytotoxicity (ADCC) assays will be performed

Translational potential

This project is poised to have major implications for guiding future clinical decision making for patients with oesophageal cancer. Specifically, the connections made by the student between molecular characteristics and responses to therapy in the trial of immunotherapy in oesophageal cancer will be vital for developing new clinical stratification models.

Training opportunities

The overall strategy for the project and the laboratory research will be supervised by Prof. Xin Lu, Director of the Ludwig Institute for Cancer Research in Oxford, who has extensive experience of mentoring clinical and non-clinical DPhil students. There are opportunities to tailor the exact direction of this project to the interests and background of the trainee, with a focus on important emerging tools such as organoids, co-culture, single cell sequencing, TAPs sequencing technology to detect DNA methelome of cfDNA and autoantibody detection in liquid biopsies. Prof Lynn Dustin also has extensive mentoring experience and will provide expertise in autoimmunity. This project will enable the student to benefit from expertise and technologies at both the Ludwig Institute for Cancer Research and Kennedy Institute. The student will have opportunities to integrate with the wider scientific and clinical communities in Oxford through established collaborative networks, and with the national and international communities at conferences. The student will benefit from the training and career development programme at the Ludwig, which includes: regular oral presentations, journal clubs, and skill development in writing, data management and public engagement.

15. An integrated systems biology approach to investigate the spatial Myeloma tumour microenvironment ^{3,4 –} Prof. Udo Oppermann

Primary Supervisor: Prof. Udo Oppermann Additional Supervisors: Assoc Prof. Adam Cribbs Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

Multiple Myeloma (MM) is a plasma cell derived malignancy with the tumour residing within the bone marrow environment. Work on solid tumours provides clear evidence that the complex interactions of the cells constituting the tumour microenvironment play a pivotal role in mediating survival, proliferation, drug resistance, and progression of the cancer by shaping adaptive and innate immunity ^{1,2}. In regard to MM, the immune responses to therapy have been investigated using flow cytometry or single-cell NGS based platforms. Here, significant progress has been obtained to understand the immune composition and activation states of bone marrow aspirate-derived myeloma samples. However, a drawback of this approach has been the lack of spatial information that can be obtained. In order to fill this evident gap in understanding myeloma and its microenvironment the DPhil candidate will apply a novel and systematic approach that integrates multiple layers of information (i.e. targeted proteomics, transcriptomics, genomics) within a spatial context. This would significantly advance our understanding of myeloma phenotypes and interactions with immune and stromal cells and will help to better understand responses to therapy. We will use MM trephine biopsy samples obtained from routine clinical diagnostics and clinical trials and apply 'omics' approaches to these tissue sections. Following experimental data collection, the analysis will include the application of machine learning algorithms and will result in an integrated view of the myeloma tumour and its microenvironment.

Research objectives

Suggested overall workflow and clinical samples: In the first phase of the DPhil project (over the first 12-18 months) the candidate will acquire necessary basic skills such as sectioning of formalin-fixed paraffin embedded (FFPE) trephine biopsies, laser-capture microscopy, proteomics, multiplexed imaging, next-generation sequencing using in-house and collaborator facilities. Within this period basic statistical and computational skills will be developed (if required) by making use of the excellent training facilities at Oxford. The remainder of the DPhil will be used to apply these skill sets to longitudinal trephine samples obtained from clinical trials, such as immune therapies or novel reagents in early phase clinical trials. Biobanked samples will be obtained through close collaboration with clinical collaborator Ramasamy at OTMC.

In situ analysis of MM trephine biopsies and targeted protein marker detection: To this end we have created and validated a targeted proteomic-based affinity reagent panel for deployment in cycling immunofluorescence and/or imaging mass cytometry (IMC) studies. The panel is based on our previous marker selections to characterise the immune environment (myeloid, lymphoid compartments; immune activation, exhaustion) and in addition allows to identify key myeloma factors (such as targets of immune and/or IMID therapies); in addition it provides the ability to determine stromal cell types (such as fibroblasts, endothelial and mesenchymal cells, osteoblasts, adipocytes) in formalin-fixed paraffin embedded (FFPE) trephine biopsies. Data analysis will be carried out by using software packages such as HALO, successfully used in the group. The outcome of this workflow is the characterisation of regions of interest (i.e. regions that attract or repulse immune cell infiltration and activation) in trephine samples; subsequent histological sections of the same sample will then be used to perform laser caption dissection followed by targeted genome sequencing and proteomic analysis of the region of interest.

Targeted genome sequencing analysis using the recently developed myeloma genome panel developed by co-applicant Thakurta³ will be applied by the DPhil candidate on DNA from matching FFPE sections using laser capture microdissection using an extraction-free library preparation technique developed by collaborator Rao⁴. Depending on the number of tumour cells, we will subdivide the tumour into subregions and individually barcode them. We will thus be able to obtain copy number alteration and single nucleotide variant information from spatially distinct regions of the biopsies, which we will integrate with proteomic data from adjacent sections.

Mass spectrometry based proteomic analysis of the myeloma tumour and its environment will be in collaboration with Professors Kessler and Fischer at the Centre for Medicine Discovery (CMD), who have co-developed and applied in situ mass spectrometry workflows⁵. They will supervise the student in laser capture microscopy and mass spectrometry techniques as well as data processing and analysis.

ANCER OXFO ESEARCH CENTI

Integration and data analysis – we anticipate that by combining the information and multiple datasets with the spatial distribution of immune and bone cells relative to the tumour cells plus the clinical data will provide significant novel insights into multiple myeloma pathobiology. Co-supervisor Cribbs has developed workflows for dataset integration and will work with the DPhil candidate to apply machine learning techniques in order to identify patterns that define tumour – microenvironment interactions and therapeutic response.

Translational potential

We expect that this project will significantly increase insights from our previous genomic and transcriptomic analyses of myeloma bone marrow aspirates by applying spatial omics analyses, including genomics and global proteomics. To our knowledge this is a pioneering attempt in the myeloma field and we foresee that a systems-based approach will enable us to answer the following research questions: what are the cellular components (immune, stromal cells) that infiltrate or surround the tumour? What is the activation/exhaustion status of the immune cells that are found at the tumour site? Does the genomic background play a role in the immune response or the spatial parameters? Can therapeutic responses and mode of action be gained from spatial information?

The translational value lies in (i) a better understanding of the heterogeneity of MM and how this is related to spatial interactions and tumour phenotypes (such as proliferation, immune exhaustion, evasion), and (ii) the possibility to identify therapeutic intervention points that can be utilized to inform on adequate therapies to achieve desired responses, especially in relapsed/refractory settings. Furthermore, we expect that (iii) LCM of the MM tumour and its immune and stromal environment will provide essential and novel information about how tumour cells communicate with their non-tumour environment, which possibly provides novel avenues in immuno-oncology research.

Training opportunities

The DPhil candidate will receive training in wet lab activities covering multiple of aspects of modern cell and molecular biology (next generation sequencing, state of the art proteomics, metabolomics, imaging (cycling immunofluorescence, imaging mass cytometry) as well as training in computational and statistical methods. The Oxford Translational Myeloma Centre is an ideal place for interested candidates either with a medical training (with a required interest in haemato-oncology) wishing to deep-dive into state-of-the-art multiomics and computational techniques or molecular biologists wishing to expand their skill sets and apply these to myeloma research. Training of next-generation fellows is a key aspiration of OTMC. Ample opportunity is provided to successful candidates to interact with pharmaceutical industry, due to multiple existing research projects of the investigators and collaborators of this proposal.

References

1. Binnewies, M., *et al.* Understanding the tumor immune microenvironment (TIME) for effective therapy. *Nat Med* **24**, 541-550 (2018).

2. Tang, T., *et al.* Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. *Signal Transduct Target Ther* **6**, 72 (2021).

3. Sudha, P., *et al.* Myeloma Genome Project Panel is a Comprehensive Targeted Genomics Panel for Molecular Profiling of Patients with Multiple Myeloma. *Clin Cancer Res* **28**, 2854-2864 (2022).

4. Rao, S., et al. Intra-prostatic tumour evolution, steps in metastatic spread and histogenomic associations revealed by integration of multi-region whole genome sequencing with histopathological features. *BioRXive* (2023).

5. Davis, S., Scott, C., Ansorge, O. & Fischer, R. Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain. *J Proteome Res* **18**, 1787-1795 (2019).

16. Do mutations in cancer arise through histone post-translational modifications? ^{3,4} – Assoc Prof. Peter Sarkies

Primary Supervisor: Assoc Prof. Peter Sarkies **Additional Supervisors:** Assoc Prof. Benjamin Schuster-Böckler **Eligibility:** Tracks 3 & 4 eligible to apply for this project.

Abstract

Mutations in the sequence of DNA are the fundamental source of cancer, leading to activation of oncogenes and inactivation of tumour suppressor genes[1]. Almost all cancers demonstrate genomic instability with mutation rates greatly elevated above healthy cells; indeed, genomic instability is widely accepted as an enabling characteristic supporting cancer growth by increasing the phenotypic diversity of cells within a cancer and providing ways in which cancers can become more aggressive by evading the immune system, or initiating metastasis [2]. Over the last 10 years, high throughput sequencing of primary human cancers has provided a spectacularly detailed characterisation of the mutations that define cancers and identified a number of mutational "signatures" that together can be used to classify mutational processes [3]. Some mutational signatures can be assigned to specific cellular processes [4] or exogenous agents such as tobacco smoke[5]. However, the vast majority are still unexplained [6]. It is therefore key to our understanding of cancer to develop improved insight into the sources of these mutational signatures. Mutations often arise as a consequence of damage to DNA. The Sarkies lab discovered that DNA methylation, a key form of epigenetic regulation in human cells, also has the potential to damage DNA through off-target alkylation of cytosine [7,8]. Left unrepaired, this can lead directly to mutations[9]. Epigenetic regulation beyond DNA methylation, in particular histone post-translational modifications, takes place close to the DNA and, like DNA methylation, uses metabolically active co-factors. We therefore hypothesise that histone post-translational modifications could be a hitherto unknown source of DNA damage and thus account for some of the unclassified mutational signatures in cancer.

The aim of this joint project is to test this hypothesis by combining expertise from the two groups. The first stage will take place in the Sarkies laboratory, which specialises in using evolutionary approaches to understand epigenetic regulation. We will use co-evolution analysis across eukaryotic species as well as co-expression analysis from human cancers and healthy tissues to identify potential associations between histone post-translational modification rates and specific DNA repair pathway activity. This will give clues as to how histone post-translational modification could damage DNA. In the second part of the project, using the expertise of the Schuster-Böckler laboratory (e.g. [10]), the student will test whether the links between histone post-translational modifications and DNA repair pathways can explain mutational signatures using state-of-the-art machine learning methods to analyse high-throughput sequencing data. Finally, we will test our hypotheses in the laboratory by using experimental introduction of histone modifications into specific sites in human Acute Myeloid Leukaemia (AML) cells to test if this incurs increased mutations in the same region. Together this will enable us to identify novel sources of endogenous DNA damage due to epigenetic processes. Crucially, this will not only enable us to better understand how cancer arises, but also to predict which cancers will be particularly vulnerable to specific chemotherapeutic agents, as cells with high levels of histone post-translational modification induced DNA damage will be more vulnerable to agents that introduce the same type of damage.

Research objectives

Academic value

Mutational signatures underpin how cancers develop. Understanding where different mutational signatures come from, however, is much harder than classifying them. Our hypothesis that histone post-translational modifications might be responsible for some of the many "orphan" signatures therefore has the potential to provide important new insight into cancer development. Additionally, our research may provide new insights into why epigenetic pathways are so frequently perturbed in cancer. Together, these will provide new avenues to explore the fundamental basis of cancer development and progression.

Collaborative value

The Sarkies lab is based in the Biochemistry Department and is focussed on using evolutionary methods to understand epigenetic regulation. The Schuster-Böckler lab is based in the Ludwig Department of Cancer and focusses on computational analysis of molecular processes in cancer. This will therefore bridge two different departments and link two labs with disparate interests and expertise. Sarkies and Schuster-Böckler are two early career group leaders, and have

never collaborated together. Supervising a joint student is a direct way to promote collaboration and establish a new and lasting collaboration between the two research groups.

Translational potential

The key translational outcome is in the arena of better targeting of chemotherapies. Crucially, many chemotherapy treatments work by introducing DNA damage. If we can better understand sources of DNA damage due to epigenetic pathways such as histone post-translational modifications it will enable us to predict, from the activity of these pathways, which cancers will be more vulnerable to particular DNA damaging agents. If we discover that a particular histone post-translational modification damage, tumours with high levels of this modification could be targeted for treatment with alkylating agents. Since measuring histone post-translational modification levels is straightforward, such a targeted approach would be an attractive and feasible outcome of the research described in this proposal.

Training opportunities

The project will provide training in comparative genomics across species and gene expression network construction and analysis in cancer. It will provide training in machine-learning methods and modelling approaches for mutational signature identification. It will also provide training in basic molecular biology techniques, including cell culture, CRISPR and high-throughput sequencing.

References

1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144: 646–674. doi:10.1016/j.cell.2011.02.013

2. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12: 31–46. doi:10.1158/2159-8290.CD-21-1059

3. Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer. 2021;21: 619–637. doi:10.1038/s41568-021-00377-7

4. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, et al. Clock-like mutational processes in human somatic cells. Nat Genet. 2015;47: 1402–1407. doi:10.1038/ng.3441

5. Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, et al. Mutational signatures associated with tobacco smoking in human cancer. Science (80-). 2016;354: 618–622. doi:10.1126/science.aag0299

6. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578: 94–101. doi:10.1038/s41586-020-1943-3

7. Rošić S, Amouroux R, Requena CE, Gomes A, Emperle M, Beltran T, et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat Genet. 2018;50: 452–459. doi:10.1038/s41588-018-0061-8

8. Dukatz M, Requena CE, Emperle M, Hajkova P, Sarkies P, Jeltsch A. Mechanistic Insights into Cytosine-N3 Methylation by DNA Methyltransferase DNMT3A. J Mol Biol. 2019;431: 3139–3145. doi:10.1016/j.jmb.2019.06.015

9. Sarkies P. DNA Methyltransferases and DNA Damage. Adv Exp Med Biol. 2022;1389: 349–361. doi:10.1007/978-3-031-11454-0_14

10. Tomkova M, Tomek J, Kriaucionis S, Schuster-Böckler B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 2018;19. doi:10.1186/s13059-018-1509-y

Interrogating the fibroblast phenotype of DNA repair deficient cancer ³ – Assoc Prof. Eileen Parkes

Primary Supervisor: Assoc Prof. Eileen Parkes **Additional Supervisors**: Prof. Kim Midwood **Eligibility:** Track 3 students are eligible to apply for this project.

Abstract

Understanding the tumour microenvironment of BRCA1-mutant breast cancer is key to developing new therapeutic strategies to improve durable responses to treatment. Cancer-associated fibroblasts (CAFs) are not merely by- standers in the tumour microenvironment, but crucial in treatment response and metastasis. Using models of this disease subtype developed in our lab we have identified a unique CAF phenotype potentially associated with inhibitor resistance. In this proposal we will investigate how CAF phenotype may impact response to PARP inhibition, and further investigate the CAF phenotype in BRCA1-mutant breast cancer.

CAFs are the dominant component of the stromal tumour microenvironment and contribute to cancer progression as well as therapeutic response. CAFs contribute to an immune-excluded and immunosuppressed tumour microenvironment as well as driving pro-tumorigenic macrophage polarisation. Recently it has been reported that tumorigenesis in *BRCA1*-mutant cancer is partly driven by a distinct fibroblast population. Despite this crucial role, the phenotype of CAFs in *BRCA*-deficient breast cancer and their contribution to therapeutic response/resistance, particularly to PARP inhibition, is poorly understood.

Research objectives

• Investigation of response to PARP inhibitor treatment and impact of fibroblast phenotype in BRCA1-mutant and wildtype *in vivo* models

Our preliminary data demonstrates the distinct CAF phenotype in *Brca1*-deficient treatment-naïve tumours. This aim will further characterise the impact of PARP inhibition on fibroblast phenotype using FACS immune profiling. Using the 4T1 *Brca1* isogenic models, we will perform *in vivo* treatment with the PARP inhibitor niraparib. Tumours will be resected and half the tumour dissociated and digested for subsequent FACS analysis, using lymphoid (CD3, CD4, CD8, CD19, NKp46 and CD279), myeloid (CD80, MHS II, Ly-6G, Ly-6C, CD11b, CD11c, CD206, F4/80) and fibroblast (panCK, CD31, PDGFRα, FSP1, SMA, Podoplanin, MHCII) antibody panels.

Outcomes: These experimental approaches will further address the distinct CAF phenotype in the 4T1 sh*Brca1* model as well as identifying the impact of PARP inhibition on CAFs in the tumour microenvironment, an important unanswered question.

• Characterisation of fibroblast phenotype in human breast cancer using spatial transcriptomics

While our preliminary data strongly supports a distinct CAF phenotype in the murine models we have studied, we do not yet know the translational relevance of this to human breast cancer. In collaboration with the Breast Cancer Now biobank we have received preliminary approval (see letter of support) to obtain formalin-fixed paraffin- embedded samples of triple negative breast cancer from patients with *BRCA1* mutation (n = 4) and from *BRCA1* wildtype tumours (n = 4). Tumours will be matched for size (T) and nodal status (N) stage as well as histological subtype (ductal cancer) to minimise confounding variables. Whole face sections (a single 4 μ m section from each tumour) will be stained with DAPI, CD45+ (immune cells), SMA (CAFs) and panCK (tumour cells). Regions of interest will be selected using the GeoMx platform. Downstream Illumina NGS capturing whole transcriptome will then be performed on distinct regions of interest, with in depth bioinformatic analysis performed.

Outcomes: Identifying the ability of murine models to model CAFs in *BRCA*-mutant breast cancer will address the translatability of the findings of this study – whether *in vivo* models are sufficient to investigate potential combination strategies or alternative approaches (e.g. PDX, patient-derived organoids and co-culture) are needed to accurately model and optimise clinical impact.

 Modelling fibroblast phenotype to investigate how fibroblasts impact tumour growth, therapeutic response and metastasis in breast cancer

From our preliminary data analysis (RNAseq of fibroblasts from 4T1 *Brca1* isogenic tumours) and further data obtained in aim (2), consensus hits between mouse and human tumours will be identified and ranked. Top hits identified will be genetically manipulated on GFP-labelled 3T3 Balb/c fibroblasts (in house) using lentivirus CRISPR Cas9 (LentiCRISPR v2, in house). We will use conditioned media from 4T1 and 4T1 sh*Brca1* cells *in vitro* and perform 10 – 14 days co- culture with fibroblasts to determine the direct impact of chemokines and conditioned media on fibroblast plasticity. Conditioned media from genetically manipulated fibroblasts will additionally be co-cultured with bone marrow derived monocytes, derived from bone marrow flushes of humanely killed Balb/c mice, to determine impact of fibroblast phenotype on myeloid cell differentiation and phenotype, analysed using FACS.

Outcomes: Together, these data will identify the role of distinct fibroblast population in tumour growth and spread, and potential therapeutic opportunities to directly target fibroblasts to improve patient outcomes in *BRCA*-mutant breast cancer.

Translational potential

The direct comparison of hits from an *in vivo* model and human breast cancer samples will be impactful in determining how efficiently mouse models can be used to develop therapeutic strategies around CAFs and what limitations there might be of this approach. Overall, it is intended that this work will lead to discovery of potential novel CAF-related targets that could be further validated for clinical use, and accelerate translation to the clinical setting by identifying potential CAF phenotypes that predict response/resistance to PARP inhibition and thus patient selection for alternative or combination strategies.

Training opportunities

In vivo modelling, Flow cytometry analysis, multiplex immunofluorescence, digital spatial profiling, CRISPR/Cas9, cell culture, bioinformatics techniques include R for analysis of transcriptomic data.

References

van Vugt MATM, Parkes EE. When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. *Trends Cancer*. 2022;8(3):174-189. doi:10.1016/j.trecan.2021.12.003

18. Exploring the biological drivers of 1q21+ high risk Myeloma by using multi-OMICS analysis of patient derived tumour, immune cells and bone marrow aspirates^{3,4} – Prof. Anjan Thakurta

Primary Supervisor: Prof. Anjan Thakurta **Additional Supervisors**: Assoc Prof. Karthik Ramasamy **Eligibility:** Tracks 3 & 4 eligible to apply for this project.

Abstract

Multiple Myeloma is an incurable malignancy of the clonally expanded plasma cells and is genomically heterogeneous. Up to 40% of newly diagnosed (NDMM) and 70% of relapsed and refractory Multiple Myeloma (RRMM) patients carry gain or amplification in chromosome 1q21 locus. Copy number gain (3 copies) or amplification (4+ copies) together designated as 1q21+ are poor prognostic biomarkers in NDMM and feature prominently in driving disease progression in the relapse settings. Various groups have previously analysed large datasets to define the prognosis of 1q21 MM. Notable among these, the analysis from the Myeloma Genome Project (MGP), co-led by the applicant, identified amplification of 1q21 in the background of ISS3 (international staging system) as a 'double hit' MM with very poor clinical outcome.1 Another analysis of 1905 patients from the Myeloma UK group interrogated a combined dataset from Myeloma X and XI trials and confirmed the poor prognosis of 1q21. This analysis also demonstrated co-occurrence of genomic features to add adverse prognosis of this group of MM patients.2 Recently, by paired tumour sample analysis, we have found genetic lesions of 1p32LOH (loss of heterozygosity) with 1q21 gain co-evolve in driving clinical resistance in Myeloma (Ansari-Pour, Thakurta, unpublished results). There are many postulated biological drivers and therapeutic targets of MM within the 1q21 locus that are being analysed and pursued. Previously, by unsupervised analysis of the genome and transcriptome of 514 NDMM patients, we identified a biological subset of patients (designated as MDMS8) with poor prognosis3. While diverse high-risk genomic features (including ~ a third with 1q21 gain) were identified, we found a common transcriptional program among the patients of this subset. The tumour cells in this group showed significant loss (~ 10%) of genome, damaged DNA repair pathways, dysregulated cell cycle as key genomic and transcriptomic features of high-risk disease. Master regulators were identified as key drivers of the transcription program. However, due to lack of availability of samples, a detailed proteomic analysis was not performed to interrogate the functional and metabolic drivers of high-risk MM.

Analysis of Myeloma proteome (and metabolome) is thus far limited but some published proteomics literature suggests its feasibility and the potential utility. For example, by analysing 5 paired patient samples Ng et al identified CDK6 as a driver of resistance to immunomodulatory drugs4. Proteomic analysis of bortezomib sensitive and resistant patient samples similarly led to the discovery of a potential biomarker of resistance5. Another group explored comparative proteomic analysis of bone marrow aspirates and serum to identify new biomarkers for MM5. Metabolic analysis of MM has not been published yet, offering a new opportunity to initiate initial exploration in the study of a high-risk disease subset such as 1q21+ MM. Our hypothesis is that a systematic proteomic analysis of 1q21+ MM cell lines and patient samples may add to the overall understanding of key proteins and biological processes or their regulation that functionally drive the disease. In a separate project, we are exploring genomic drivers of 1q21+ MM for identifying therapeutic targets. Here, the proposed project takes a complementary approach and explores a proteomics-based analysis of patient tumour cells, immune cells and the bone marrow aspirates to establish proteomic and metabolomic profiles of 1q21 MM and validate key functional drivers of high-risk disease.

Research objectives

The project will be divided in terms of experimental work done at Botnar Lab (in collaboration with Prof Oppermann) and Centre for Medicines Discovery, Oxford (with Prof Benedikt Kessler's group), at Metabolon (in collaboration with Dr Sarangarajan) and computational analysis will be done within OTMC (with support from a computational science team). We will access cell lines (Sarah Gooding, Oxford Oppermann, Oxford, commercial sources), and patient bone marrow aspirates (Oxford Biobank supervised by Prof Ramasamy) for 1q21+ and 1q21- (standard risk patients) and separate CD138+ and CD138-fractions and use them for proteomic/metabolomic analysis. In agreement with the collaborators, some data or materials from a companion project could be shared for this project work (Dr Erin Flynt). This project will be run in three phases: *Phase I:* In the initial phase, pilot experiments will be set up to study Myeloma cell lines representing normal, 1q21 gain and 1q21 amplified myeloma cells. Alongside, proteomics analysis of immune cell types (CD4, CD8 cells and NK cells) and serum will be performed from peripheral blood from healthy donors.

Total proteome, phospho proteome and metabolic profiles (in collaboration with Metabolon) will be generated from the cell lines to develop the methods for experimental pre-analytics and bioinformatic analytics. A datahub in OTMC will be set up for storage and analysis of data. Various experimental conditions will be tested to mimic real life conditions of patient derived bone marrow aspirates. CytoF based analysis will be conducted for comparing some markers from the immune subsets and Myeloma cell lines using panels already in use in the Botnar lab. Analysis of the cell line data will be used as a benchmark when analysis of patient samples is tested. Once the pilot experiments are completed, based on the analysis, a subset of cell lines will be chosen to perform drug treatments to understand the impact on the proteome and metabolome. Standard of care therapeutic agents such as steroids, immunomodulatory drugs, proteasome inhibitors and anti-CD38 antibodies will be used alone and in clinically used combinations. The final outputs of this work will be the identification of protein(s) affected in 1q21+ Myeloma and/or via drug treatment with potential biological or clinical impact. Phase 2: This phase is based on the analysis of 30-40 patient samples in each control or 1q21 + group and further analysis of preclinical data and correlative analysis of potential biomarkers. The key types of questions we will pursue are: What are the specific proteomic/phosphoproteomic and metabolic profiles of 1q21+ Myeloma in CD138+ cells, immune subsets or in bone marrow aspirates compared to normal counterparts? What are the biological drivers of this segment of vs those without (in previously identified genomic high risk MDMS8 segment with 1q+ vs 1q- counterpart). Biobanked and genomically characterized patent samples will be used for this analysis. Phase 3: Validation of key proteins or metabolites identified from preclinical and clinical samples will be the focus in this phase. A subset of the most promising candidates from CD138+, bone marrow aspirate or immune cells will be selected. For preclinical validation, cell lines will be modified to create knock downs or CRISPR mediated knock outs, for expression of specific mutants, based on targeted genes and the phenotypic and biochemical effects will be measured. Target feasibility/ targetability analysis is outside the scope of this project.

Translational potential

This project is forward and reverse translational in nature whereby the student will explore preclinical data analysis coupled with retrospective analysis of patient data to derive insights for the development of biomarkers or therapeutic targets relevant for the 1q21+ high-risk Myeloma. The project is planned to run side by side the genomics oriented collaborative project to cross fertilize both projects. The role of 1q21 in relapse in Myeloma is well documented and there is also a clear need to find actionable insights for detection and characterisation of 1q associated biomarkers. There is clear potential to develop a personalised treatment approach to test translationally driven clinical concepts within the OTMC Myeloma Master protocol. This project will bring in an approach so far not addressed by genomics and other approaches.

Training opportunities

The student will learn basic molecular techniques, cell biology methods, some OMICS techniques, data generation and computational analysis of large datasets from multiple sources. The student will also learn the relevant methods of diagnosis and treatment of myeloma and other related OTMC's projects (such as single cell analysis, long read sequencing etc.)

References:

- 1. Walker BA, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019. 33(1):159-170.
- 2. Shah V, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32(1):102-110
- 3. Ortiz Estevez, M., et al. Integrative multi omics identifies high-risk multiple myeloma subgroup associated with significant DNA loss and dysregulated DNA repair and cell cycle pathways. BMC Medical Genomics; 2021; 14:295-302
- 4. Chen, Y., et al. 2021; J. Proteome Res. 2021, 20, 5, 2673–268.
- 5. Ng, Y., et al. Nature Comm. 2022; 13:1009 https://doi.org/10.1038/s41467-022-28515-1
- 6. Chanukuppa, V., et al. A Comprehensive Study Using Bone Marrow Interstitial Fluid and Serum Samples, 2021 Frontiers in Oncology, vol 10 doi: 10.3389/fonc.2020.566804

19. Investigating the role of hypoxia for the FLASH effect by combining FLASH Radiation with hypoxia-modulated anticancer drugs^{3,4} – Kristoffer Petersson

Primary Supervisor: Kristoffer Petersson Additional Supervisors: Assoc. Prof Geoff Higgins Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

FLASH radiotherapy is a novel radiotherapy delivery methodology using ultra-high dose rates (>30-40 Gy/s), ~1000 times higher than what is used clinically¹. Recent global preclinical research has indicated that FLASH can reduce radiation-induced damage in healthy tissues with similar anti-tumour effects as conventional radiotherapy, the so-called "FLASH effect". Though FLASH clinical trials have started, we do not yet understand the radiobiological mechanism(s) responsible for the FLASH effect. One hypothesis is that FLASH radiation consumes oxygen at a much higher rate than can be re-supplied, causing hypoxia and thereby increased radio-resistance in cells/tissue². Why this is specifically sparing normal tissue has been debated, with one idea being that the tumour cells that are hard to kill with radiation are often already hypoxic, i.e. little change in response to FLASH vs conventional irradiation¹. To test this hypothesis and at the same time test the response of FLASH radiation as a combination treatment with clinical anticancer drugs, we will combine FLASH radiation with Tirapazamine (activated in hypoxia) and Atovaquone (increases tumour oxygenation) in 2D (Tirapazamine, hypoxia and normoxia) and 3D (Spheroids, Tirapazamine and Atovaquone) cell cultures³. If the FLASH effect is caused by hypoxia, the FLASH radiation + Tirapazamine should be more toxic than conventional radiation + Tirapazamine. Similarly, the FLASH sparing effect should be reduced when combined with Atovaquone, resulting in similar response as conventional radiation + Atovaquone. To summarise, the response in tumour cells should increase when FLASH is combined with these drugs. However, for a therapeutic benefit it will be important to understand how normal tissue/cells respond to the treatment. For that purpose, we will also expose 3D cell cultures (organoids) to the treatment and evaluate the radiation-induced toxicity. The FLASH-drug combinations that show therapeutic benefit will subsequently be evaluated in mice to further investigate its potential for clinical translation.

Research Objectives

The research project aims to elucidate if the oxygen consumption hypothesis is the main contributor of the FLASH sparing effect seen for normal tissue. By using 2D and 3D cell cultures with controlled levels of oxygen and comparing the response to FLASH vs conventional irradiation with and without drugs that are known to modulate oxygen levels or that activates in hypoxia, we will be able to quantify the importance of oxygen concentration for the FLASH effect. In addition, the FLASH-drug combination that show the highest therapeutic potential will be evaluated in vivo (mice). This will give an indication of the potential of this combined therapy for clinical translation

Translational potential

FLASH radiotherapy has received a lot of research focus recently due to its ability to spare normal tissue, while keeping the tumour response comparable to conventional radiotherapy. Without knowing much about the radiobiological mechanisms responsible for these beneficial characteristics of FLASH, clinical trials have already started. Likely, such studies are not designed in an optimal way as we do not yet know when we see a FLASH effect, how large it is, and why we see it. Hence, we need more preclinical data to support the design of clinical trials and to guide us in the clinical translation of this promising treatment technique. This project will tell us about the role of hypoxia for the FLASH effect and could potentially serve to answer all the questions stated above. In addition, our FLASH-drug combination treatment could help to further widen the therapeutic window beyond what FLASH alone is able to achieve, i.e. further enhancing the biological benefit of the FLASH effect.

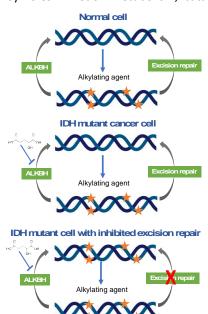
Training opportunities

The student will be trained in various in vitro assays, such as Western Blot, DDR analysis, and clonogenic assay. They will also be trained and work with more advanced in vitro models, e.g. spheroids, organoids and 3D bio-printed tissue models. In addition, the student will be trained on the use of in vivo (mouse) models, evaluating normal tissue toxicity and tumour response to treatment. Correct dosimetry is essential in order to get useful and accurate preclinical results from our studies. Dosimetry also becomes more challenging at ultra-high dose rate. Hence, there will be some training opportunities in radiation dosimetry.

References:

- 1. J.D. Wilson, E.M. Hammond, G.S. Higgins, K. Petersson. "Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?" *Front. Oncol.* 9, 1563 (2020). <u>10.3389/fonc.2019.01563</u>
- E.J. Moon*, K. Petersson* & M.M. Olcina*. "The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT", *International Journal of Radiation Biology*, 98:3, 439-451(2022) *Equal contribution.<u>10.1080/09553002.2021.1988178</u>
- 3. G. Adrian, JL. Ruan, S. Paillas, C.R. Cooper, **K. Petersson**. (2022). "In vitro assays for investigating the FLASH effect". *Expert Reviews in Molecular Medicine* 24, e10, 1–12 (**2022**). <u>https://doi.org/10.1017/erm.2022.5</u>

20. Exploiting synthetic defects in metabolism and DNA repair to improve the treatment of glioma and AML ³ - Prof. Peter McHugh


Primary Supervisor: Prof. Peter McHugh Additional Supervisors: Prof. Chris Schofield Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Current treatments for gliomas, an aggressive form of brain tumour, are non-specific and do not significantly increase clinical survival rates. Likewise, treatments for acute myeloid leukaemia (AML), especially relapsed disease, remain challenging. We have discovered a potential synthetic lethal response in tumours which exhibit a mutation in the isocitrate dehydrogenase (IDH) gene: IDH mutations are present in ~80% of gliomas and ~20% of AMLs. Specifically, the loss of several related DNA repair factors and IDH mutation leads to loss of cancer cell viability. Combining mechanistic cellular studies with our ongoing studies on small molecule DNA repair inhibitors could provide a route to treat these aggressive diseases.

Research objectives

Following the sequencing of thousands of glioblastoma samples, IDH was found to be mutated in in around 80% of tumours and in a significant subset of AML. A specific IDH1 (R132H) mutation occurs in about 70% of glioma tumours. IDH1 and IDH2 play key roles in redox metabolism, catalysing the oxidative decarboxylation of isocitrate to a-ketoglutarate (α -KG) and CO₂

Figure 1. Cells depend upon both the ALKBH enzymes and excision repair to remove DNA damage. Loss of both can be lethal in tumour cells.

producing NADPH (Cohen *et al.*, 2013). The cancer-associated mutant forms of IDH enzymes produce 2-hydroxyglutarate (2-HG), termed an '*oncometabolite*', a metabolic intermediate that helps tumour cells survive and proliferate. 2-HG acts as a competitive inhibitor of enzymes using a-ketoglutarate as a co-substrate, including a family of metal dependent dioxygenases, the ALKB family (Rohle *et al.*, 2013).

ALKBH2 and ALKBH3 are DNA repair enzymes that directly remove alkylation DNA damage. ALKBH2 is predominantly involved in repairing 1-methyladenine (1-meA) lesions on double-stranded DNA whilst a substrate for ALKBH3 is 3-methylcytosine (3-meC) lesions on single-stranded DNA (Dango *et al.*, 2011, Fedeles *et al.*, 2015).

Following a genetic screen we observed a synthetic lethal response to ALKBH2 and ALKBH3 loss that is induced by loss of several DNA repair excision repair factors. This, in turn, suggested that cancer cells harbouring IDH mutations could be sensitive to simultaneous loss of DNA exision repair genes by virtue of their reduced ALKB repair activity (**Fig. 1**). Follow-up studies suggest that this hypothesis is correct, and that inactivation of excision repair enzymes in IDH mutant tumour cells can be lethal.

We will explore the detailed biology of the synthetic relationship of DNA repair defects with the key clinically-relevant IDH1 R132H patient mutation, as well as ALKBH2/3 disrupted cells. By performing CRISPR-Cas9-based screens that target all know DNA damage response (DDR) genes in IDH mutant cells, we will survey and define the full range of DDR genes required for survival of IDH mutant cells and therefore idenfify additional new therapeutic targets. These findings will be validated in isogenic, matched glioblastoma and AML cell lines with and without IDH mutations, allowing us to explore this potential mechanism of synthetic lethality in a relevant cancer setting.

We will characterise the nature of the DNA repair defects observed in repair defective IDH mutant (and ALKBH deficient) cells using a wide range of well-established cellular, genetic and biochemical assays available to us. We will also define the pathway to cell death in cancer cells mutated in IDH1 or lacking ALKBH2/3 that is synthetic with additional repair pathway loss. Furthermore, inhibitors of IDH and ALKBH2/3 are available, developed in the group of Prof. Chris Schofield (Woon *et al.*, 2012). Molecules that target both wild-type IDH1 but also selectively inhibit the R132H form (as well as other clinically observed variants) have been developed and will be used to test our hypothesis that in IDH mutated cells can be killed through DNA repair pathway inhibition. Moreover, we will work in collaboration with our chemistry collaborators to generate improved inhibitors of key excision repair factors that can be used to selectively target IDH deficient tumours, work which builds upon well-

developed work in this area in our laboratories. These tools, both genetic and chemical, will ultimately be combined by the student to perform key proof-of-principle experiments to explore this novel approach to treating two cancers of unmet need.

Translational potential

This proposal addresses a key priority of the Cancer Research UK and the Oxford Centre as it uses basic science to validate novel approaches to two difficult to treat cancers, AML and glioma.

Training opportunities

Cell culture, genomic engineering (CRISPR-Cas9 and base/prime editing), large-scale screens, general molecular biology methods, DNA damage and repair assays, advanced microscopy, cell sorting methods, protein purification chemical biology, protein science/enzyme inhibition, and biochemical assays. The student will also benefit from interactions with clinical colleagues involved in treating glioma and AML, as part of their thesis committee.

References:

- Cohen AL, et al. (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep, 13: 345
- Dango S, et al. (2011) DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell, 44: 373-84
- Fedeles BI, et al. (2015) The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem, 290(34), 20734-42
- Jalbert LE, *et al.* (2017) Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma. Sci Rep, 7: 44792
- O'Connor MJ (2015) Targeting the DNA Damage response in cancer. Mol Cell, 60(4), 547-560
- Rohle D, et al. (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 340: 626-30
- Woon EC, et al. (2012) Dynamic combinatorial mass spectrometry leads to inhibitors of a 2-oxoglutarate-dependent nucleic acid demethylase. J Med Chem, 8;55(5), 2173-84

21. BLOod Test Trend for cancEr Detection (BLOTTED): an observational and prediction model development study using English primary care electronic health records data ^{3,4–} Dr. Pradeep S. Virdee

Primary Supervisor: Dr. Pradeep S. Virdee **Additional Supervisors**: Prof. Eva Morris & Dr. Brian Nicholson **Eligibility:** Tracks 3 & 4 eligible to apply for this project.

Abstract

Blood tests are commonly requested in NHS General Practice. Blood tests might be ordered when the patient attends their GP with symptoms or signs, to monitor a known medical condition, or as part of a "health check". Some clinical guidelines for GPs include recommendations that they should investigate for cancer if a blood test is lower or higher than a normal level. These recommendations are only helpful for a small number of cancers, such as bowel or pancreatic. Over time, a patient can build up a sequence, or trend, of blood test results. This trend might tell GPs more information than single blood test results. For example, a small drop from a steady trend could be more useful than waiting for the blood test to drop below a fixed level. However, the research has not yet been done to tell us which approach is most helpful to find patients who need referral to hospital for cancer investigation. In this research, we will explore if blood tests trend can detect patients with cancer better than single blood tests and check which patient groups trend is more helpful in and for what cancers, with primary focus on digestive and blood cancers.

Research Objectives

Background: A recent clinical review confirms that simple blood tests have an important role in identifying patients for cancer investigation [1]. However, analysis of National Cancer Diagnosis Audit in Primary Care data suggests that primary care investigations may delay referral [2]. Smarter use of blood tests to select patients for further cancer investigation could increase cancer yield and reduce unnecessary referrals. Our recent research highlighted that trends over time in serial blood tests could be more useful than single blood tests and non-specific symptoms to select patients for colorectal cancer investigation, with our colorectal cancer prediction models having good predictive ability [3,4]. However, trends are subtle so difficult to spot and may exist for various cancers.

Aim: To utilise trends in blood tests from primary care for early detection of cancer.

Objectives: There are three main objectives:

1) *identify trends among repeated blood tests indicative of cancer* – the student will learn of smoothing techniques, such as LOWESS, to graphically describe trends in each blood test, both overall and by personal, clinical, and cancer characteristics (e.g. age, sex, comorbidity, diagnosis route, site, stage). Collaborators: the Big Data Institute will collaborate on data curation and understanding of electronic health records data.

2) assess predictive ability of blood test trends for different cancer types – the student will learn of dynamic models, which utilise repeated measures data for assessing clinical outcomes. These include statistical models, such as joint modelling, and machine-learning models. Collaborators: the Computational Health Informatics Lab will collaborate on the machine-learning aspect for modelling trends and the Big Data Institute will collaborate on the interpretation of repeated measures data from national datasets.

3) develop and test prediction models utilising blood test trend to optimise patient selection for referral – the student will learn of the intricacies of developing and testing statistical and machine-learning prediction models and their clinical application. Collaborators: the Computational Health Informatics Lab will collaborate on the machine-learning aspect for developing prediction models and the Big Data Institute will collaborate on the interpretation of results from national datasets.

Data: Data from ~30 million patients from the CPRD primary care database is available to develop the models. It includes information on patient characteristics, deprivation, blood tests, symptoms, medications, cancer diagnosis, and other variables over 2000-2019. It is linked to the National Cancer Registration and Analysis Service, Hospital Episode Statistics databases, and Office of National Registration death database.

Outcomes: The main outcome will be prediction models that incorporate blood test trend for cancer risk. Outputs will include peer-reviewed journal publications for each objective separately and conference presentations.

OXFORD CENTRE

Academic value: This research will develop an evidence base for blood test trend for cancer detection and inform clinical practice. The DPhil candidate will develop leadership and research skills in various areas, including primary care, electronic health records data, patient and public involvement, and more. The student will grow their academic publication record and research networks at courses and events. Collaborations in this research will provide direct access to further multidciplinary teams to improve efficiency in conducting this research.

Translational potential

The major route to a cancer diagnosis is GP-referral after the patient presents with symptoms. Despite millions of referrals each year, around half of cancer diagnoses in the UK are made late-stage, where the likelihood of survival is heavily reduced [5]. These prediction models have the potential to highlight high-risk patients before symptoms develop [6]. Initiating cancer investigation earlier could lead to the diagnosis of cancer at an earlier stage where likelihood of survival is increased. By helping GPs rule-in and rule-out patients for referral, cancer yield could be increased and unnecessary investigations reduced, minimising psychological and physical harm to patients and economic costs of unnecessary testing in the NHS.

Training opportunities

Throughout this DPhil, skills and experience will be developed in conducting independent research, working with routinely collected linked electronic health records data, patient and public involvement, statistical analysis, prediction modelling, general skill development, and more. The student will be offered a comprehensive training programme and encouraged to attend relevant courses.

Internal training: The Medical Sciences Division, Big Data Institute, and Richard Doll Building at the University of Oxford run extensive series of courses. Throughout the DPhil, the student will attend relevant courses, such as 'Conducting national and international research', 'Good Clinical Practice', 'An Introduction to Patient and Public Involvement', 'Statistical Data Analysis with R', 'Writing Skills', and 'Viva Preparation'. The student will be based in the Cancer Research Group, who will support the student and provide support throughout the research, and will also work closely with other multidisciplinary groups, such as the Medical Statistics Group and interdepartmental Computational Health Informatics Lab and Big Data Institute, to get direct additional support into various aspects of the DPhil, such as statistical methods and analystic software learning.

External training: External courses will cover general career development, research-specific training, and active collaboration building. These courses include 'Machine-Learning in R Software (Royal Statistical Society)', 'Analysis of Repeated Measures (Bristol)', 'Statistical Methods for Risk Prediction (Birmingham/Keele)', and 'Joint Modelling of Longitudinal and Survival Data (Leicester/Italy)', and CRUK DPhil courses/events. Attendence and presentation of findings at scientific conferences will also be encouraged.

References:

[1] Watson J, et al. Blood markers for cancer. BMJ (Clinical researched). 2019;367:I5774.

[2] Rubin GP, *et al*. Impact of investigations in general practice on timeliness of referral for patients subsequently diagnosed with cancer: analysis of national primary care audit data. *Br J Cancer*. 2015;112(4):676-87.

[3] Virdee PS, et al. Full Blood Count Trends for Colorectal Cancer Detection in Primary Care: Development and Validation of a Dynamic Prediction Model. *Cancers* (2022). 14, 4779.

[4] Virdee PS, *et al*. Trends in the full blood count blood test and colorectal cancer detection: a longitudinal, case-control study of UK primary care patient data. *NIHR Open Research* (2022). 2, 32:1-53.

[5] NICE. Suspected cancer recognition and referral: site or type of cancer (2020) [Accessed 6-Oct-2022]: <u>https://www.nice.org.uk/guidance/ng12</u>

22. Tackling Cancers Defective of High-Fidelity DNA Repair Mechanisms ^{,3,4} – Fumiko Esashi

Primary Supervisor: Fumiko Esashi Additional Supervisors: Prof. Bass Hassan Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

Recent technological advancements in cancer genomics have revealed significant cell-to-cell heterogeneity, highlighting the role of mutability in driving cancer evolution, posing therapeutic challenges (1). A recent study has indicated that the simultaneous impairment of two key high-fidelity DNA repair mechanisms, homologous recombination (HR) and mismatch repair (MMR), contributes to adaptive mutability and drug resistance (2). Notably, while HR loss is lethal in most cell types, MMR deficiency may mitigate this lethality. Our hypothesis is that MMR-defective backgrounds enable the survival and rapid evolution of cancer cells with HR loss. To investigate the impact of MMR/HR dual deficiencies on cancer development, we propose innovative experimental and bioinformatic approaches. Specifically, by conditionally inactivating HR in MMR-defective cellular model systems, we will identify genetic and genomic factors affecting cell survival. Additionally, we will perform association analyses based on somatic cancer mutations databases to uncover potential biomarkers and therapeutic strategies for early diagnosis and treatment of these cancers.

Research objectives

Individuals with inherited mutations within genes encoding MMR or HR factors exhibit increased risk to develop a wide range of cancers, as seen in patients with hereditary nonpolyposis colorectal cancer/Lynch syndrome (HNPCC/LS) or hereditary breast and ovarian cancer syndrome (HBOC), respectively. It is widely described that MMR defects confer mutator phenotypes with no lethal impact. Conversely, the biallelic mutations of genes encoding key HR regulators, such as the breast cancer susceptibility 2 (*BRCA2*) and the partner and localizer of BRCA2 (*PALB2*), elicits lethality, although monoallelic *BRCA2* or *PALB2* mutations are sufficient to increase cancer risk. Notably, a recent study suggests that the simultaneous impairment of MMR and HR drives adaptive mutability and drug resistance (2). However, the causal relationship of this phenomenon remains unclear. We hypothesise that MMR defective mutator background alleviates the lethal impact of HR loss and assists rapid evolution of cancer. This project tests this hypothesis and identifies genetic and genomic elements that are associated with MMR- and HR-defective cancers.

The genetic concept of 'synthetic lethality' or 'synthetic viability', involving the combination of mutations in multiple genes leading to cell death or growth, respectively, has gained rising attention in recent years for its potential for discovering new therapeutic targets in challenging cancers. Previous studies have relied on genome-wide loss-of-function screens in knockout cell lines. However, this approach has limitations, such as phenotypic changes obscured by secondary mutations. This project tackles these shortcomings by utilising the auxin-inducible degron (AID) technology (**3**) to conditionally deplete endogenous BRCA2 or PALB2 in MMR-defective HCT116 cell lines. This allows for highly-specific examination to uncover the direct impact of BRCA2 or PALB2 depletion in MMR-defective mutator background. Our

preliminary study shows that, Α indeed, the acute depletion of BRCA2 or PALB2 confers lethality (Fig 1A), as well as increased sensitivity to a chemotherapeutic drug, poly (ADP-ribose) polymerase inhibitor olaparib (Fig 1B, C) as expected (4). To identify genes that affect normal survivals of BRCA2- or PALB2-depleted HCT116 cells, we will leverage the CRISPRmediated modulation of transcription, namely CRISPR interference/activation

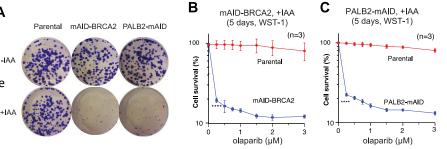


Figure 1. A. HCT116 mAID-BRCAs/PALB2-mAID cells were seeded in 6-well plates, and grown for 10 days with and without auxin (IAA). Colonies were then fixed and stained with crystal violet. B-C: HCT116 mAID-BRCA2/PALB2-mAID and parental HCT116 cells were first treated with IAA for 2 hours, and subsequently exposed to olaparib. After 5 days, cell survival was tested by WST assay. (n=3), error bars, SD. Asterisks indicate p value $\leq 0.0001 = ****$.

(CRISPRi/a) (5). Our lab has already established the systems combining AID and CRISPRi/a. Using this technology, we will identify genetic factors, down- or up-regulation of which affects the survival of BRCA2- or PALB2-depleted cells. In parallel, we will directly assess genome changes that occur upon BRCA2- or PALB2 depletion in HCT116 cells. We will isolate several clonal HCT116 cell lines which have survived upon depletion of BRCA2 or PALB2 for one month. Our

OXFORD CENTRE

preliminary analysis indicates distinct chromosomal aberrations in these cells, arising highly repetitive centromeric regions of chromosomes. This observation is particularly intriguing as these repetitive regions are known to be targeted by MMR or HR (6, 7). To gain high resolution pictures of genome changes at these regions, we will conduct **long-read whole genome sequencing using Oxford Nanopore Technology (ONT)** that has advantages over traditional short-read sequencing. It enables the detection of alterations in repetitive sequences, as well as DNA modifications, such as CpG methylation. This approach is expected to provide a comprehensive understanding of the observed genome changes. Finally, we will conduct a bioinformatic assessment of publicly available somatic cancer mutation databases, including COSMIC, to determine the prevalence of simultaneous impairment of MMR and HR pathways. We will initially focus colon cancers, which exhibit MMR deficiency in approximately 15% of cases. We will also explore the potential correlation between MMR/HR co-downregulation and the development of drug resistance. By examining the factors identified in our CRISPRI/a and long-read sequencing studies, we aim to uncover their association with drug resistance mechanisms. This integrative approach will provide valuable insights into the underlying mechanisms driving drug resistance in these specific cancer types and inform the development of targeted therapeutic strategies.

(ii) the collaborations involved and how these will be facilitated by the award:

The proposed project holds distinct opportunities to establish novel collaborations that will be facilitated by the award. This project stands out by venturing into new areas of research through long-read whole genome sequencing and cancer somatic mutation analysis, which have not been previously explored within our team nor in the field. The collaboration with Dr Adam Cribbs from the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) provides expertise in ONT-based long-read sequencing, offering new avenues for discovery and highresolution analysis of genomic alterations associated with MMR and HR deficiencies. Dr. Cribbs' knowledge and resources in this field will significantly enhance the comprehensiveness of our research. Additionally, the second supervisor Prof Bass Hassan, a clinical research scientist at the Sir William Dunn School, brings expertise in cancer mutation analysis and perspectives for translational research. With Prof Hassan's guidance, we will navigate and interpret the vast dataset of cancer somatic mutations, gaining a deeper understanding of the genetic landscape and its implications for cancer development. These collaborations not only provide access to specialised techniques and resources in their respective expertise, but also open up new possibilities for uncovering critical insights into the genome instability, including those at repetitive regions, often found in difficult-to-treat cancers. Furthermore, their ability to bridge the gap between laboratory discoveries and clinical applications will significantly enhance the scientific impact and translational potential of our work. This interdisciplinary collaboration promotes knowledge exchange, fosters practical relevance, and ensures that our research has real-world implications in the fight against cancer.

Translational potential of the project.

The proposed project holds significant translational potential. Firstly, by identifying genetic and genomic elements that influence the survival of HR- and MMR-deficient hypermutable cells, our research is expected to identify early diagnostic markers and strategies for timely intervention. We can exploit vulnerabilities specific to these cancer cells, leading to more effective treatments while minimising adverse effects. Secondly, by integrating bioinformatic analyses of cancer genomes, this project is expected to reveal the prevalence of simultaneous impairments in MMR and HR pathways in colon cancer and potentially identify previously unspecified cancer 'signatures' associated with dual HR/MMR deficiency. Further assessment of correlation between MMR/HR co-downregulation and the development of drug resistance will offer an opportunity to develop novel therapeutic strategies for these challenging-to-treat cancers. In future, similar approach could be applied to assess other types of cancers, such as ovarian cancer and pancreatic cancer, which are commonly observed in HNPCC/LS and HBOC patients.

Training opportunities

Our research project offers valuable training opportunities in key areas of cancer research, including: (1) cell culture techniques, encompassing cell line maintenance, manipulation, and experimental assays; (2) the opportunity to learn and apply long-read sequencing techniques, including sample preparation, data generation, and analysis; and (3) bioinformatic techniques for analysing publicly available somatic cancer mutation databases and exploring genetic patterns. By providing training in these areas, our project equips researchers with essential skills for future scientific endeavors in the field of cancer research. The candidates will be well supported in the Dunn school in related methods training, including CRISPR, light microscopy imaging and flow cytometry through in-house facilities, namely the Genome Engineering Oxford (led by Dr Joey Riepsaame), the Dunn School Bioimaging Facility (led by Dr Alan Wainman), and the Don Mason Facility of Flow Cytometry (led by Dr Robert Hedley), respectively.

References

- 1. Loeb, L.A. (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. *Nat Rev Cancer*, 11:450-7. doi: 10.1038/nrc3063
- 2. Russo, M. *et al.* (2019). Adaptive mutability of colorectal cancers in response to targeted therapies. *Science*, 366:1473-1480. doi: 10.1126/science.aav4474.
- 3. Natsume, T. *et al.* (2016). Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. *Cell Reports*, 15, 210–218. doi: 10.1016/j.celrep.2016.03.001.
- 4. Hopkins, J.L. *et al* (2022) DNA repair defects in cancer and therapeutic opportunities *Genes Dev.* 36: 278–293. doi: 10.1101/gad.349431.122.
- 5. Gilbert, L. A. *et al.* (2014). Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. *Cell*, 159, 647–661. doi: 10.1016/j.cell.2014.09.029.
- 6. Aze, A. *et al.* (2016). Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. *Nat Cell Biol*, 18, 684-91. doi: 10.1038/ncb3344.
- 7. Saayman, X. *et al.* (2023). Centromeres as universal hotspots of DNA breakage, driving RAD51-mediated recombination during quiescence. *Mol Cell* 83, 523–538a. doi: 10.1016/j.molcel.2023.01.004.

23. Developing single-cell transcriptomics tools for PARP inhibitor resistance in BRCA1/2-deficient cells and tumours^{3,4} – Prof Madelena Tarsounas

Primary Supervisor: Prof Madelena Tarsounas Additional Supervisors: Dr. Christiana Kartsonaki Eligibility: Tracks 3 & 4 eligible to apply for this project.

Abstract

Cells and tumours with compromised breast cancer susceptibility genes *BRCA1* or *BRCA2* retain the ability to proliferate, in spite of the severe genomic instability caused by accumulation of DNA lesions. This vulnerability is exploited by highly-specific therapies that enhance the susceptibility of *BRCA1/2*-deficient tumours to DNA damaging agents, with the poly-ADP ribose polymerase inhibitors (PARPi; e.g. olaparib) as a prominent example. In spite of clear therapeutic benefits, cure rates for *BRCA1/2*-mutated cancers remain low, as patients frequently develop resistance to PARPi. Several mechanisms of PARPi resistance have been reported. However, PARPi resistance remains a critical problem in the clinic, limiting sustained responses to these drugs. Here, we aim to identify transcriptional signatures associated with PARPi resistance, specifically olaparib resistance.

To identify such signatures, we will perform single-cell RNA sequencing (scRNAseq) using *BRCA1/2*-deficient cells in culture and cells obtained from patient-derived xenograft (PDX) models that have acquired olaparib-resistance upon prolonged exposure to olaparib. We will furthermore combine scRNAseq and EdUseq data to test whether replication failure at specific genomic sites could interfere with transcription and therefore represent the underlying mechanism of the identified transcriptome alterations.

In the longer term, this line of research can lead to predictive markers for patient response to olaparib, which could facilitate early patient stratification and the development of personalized treatment strategies.

Research Objectives

The work proposed here will help elucidate, at single-cell resolution, the relationship between the emergence of rare, tumour-initiating cells sub-populations within tumours lacking *BRCA1* or *BRCA2* genes and the response to the PARP inhibitor olaparib. Accordingly, we will pursue two main objectives:

a. Characterize the single-cell transcriptomic landscape of olaparib-resistant *BRCA1/2*-deficient cells in culture. The scRNAseq technology will enable us to generate gene expression profiles of single cells and to identify cell sub-populations with specific transcriptional signatures. To achieve this first objective, scRNAseq will be carried out in populations of olaparib-sensitive and -resistant *BRCA1/2*-deficient cells, already generated in Tarsounas lab. We will prepare libraries from each cell line, before and after olaparib resistance onset, to sequence between 7,000 and 10,000 cells using the standard protocol of the Chromium Single-Cell 3' gene expression profiling solution (10x Genomics).

Unsupervised clustering approaches will be developed to classify cells into sub-groups with specific signatures (e.g. immune response, metastasis etc.) and to monitor cell dynamics using algorithms for pseudotime analysis. We will apply this combination of analytical approaches to the cell lines that are sensitive or become resistant to Olaparib, and anticipate that this will allow us to identify cell clusters with unique patterns of gene expression, which could not be resolved at the whole-cell population level. In addition, this approach will enable us to identify eventual differences between the signatures specific to *BRCA1*- and *BRCA2*-deficient cells. Lastly, the collection of signatures identified for distinct cell subpopulations selected by olaparib will be further explored in the large METABRIC and TCGA PanCancer Atlas breast and ovarian cancer cohorts (5,098 samples, among which 355 and 362 carry alterations in *BRCA1* and *BRCA2*, respectively), specifically to assess their prognostic ability through univariable and multivariable regression models.

<u>b. Characterize the single-cell transcriptomic landscape of olaparib-resistant BRCA1/2-deficient PDX tumours in vivo</u>. In addition to linking the transcriptomic signatures of olaparib-resistant cell subpopulations to tumour gene expression data and clinical information found in databases (e.g. TCGA, METABRIC), we will recapitulate *in vivo* the results obtained *in vitro* using cell cultures. To achieve this, scRNA-seq will be carried out in cell suspensions prepared from BRCA1- or BRCA2- mutated ($n = 3 BRCA1^{-/-}$ and $n = 1 BRCA2^{-/-}$) olaparib-naïve and -resistant patient-derived xenografts (PDX). In these models

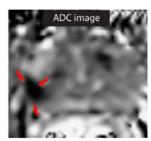
resistance emerged after treatment with olaparib for up to 150 days, when individual tumours regrew. These models are also already available for processing in Tarsounas lab.

(ii) This project will facilitate the collaboration between basic cell biology and bioinformatics, and the student funded here will be trained in and benefit from both types of expertise. Importantly, this collaboration will enable the co-applicant, Dr Christiana Kartsonaki, who is an early career researcher within the NDPH, to achieve scientific independence. Securing this CRUK award will enable her to co-supervise a graduate student in a new area of research, and at the same time, will place her in a stronger position for further funding applications.

Translational potential of the project.

In spite of initial responses to targeted therapies such as PARPi, *BRCA1/2*-deficient tumours develop a resistance to these therapies. PARPi resistance often entails genomic rearrangements and mutations that trigger rewiring of the damage response pathways within the tumour so that apoptotic responses to treatment are replaced by cell survival and metastasis. Here we anticipate to identify new, robust transcriptional signatures associated with Olaparib resistance, which can be used to stratify patients for PARPi therapy. In addition, these gene expression profiles will identify vulnerabilities that can be exploited to target resistant disease. In the longer term, these approaches can be used to develop patient screening protocols using machine learning and statistical methods.

24. Harnessing measurements of the tumour microenvironment to improve the early detection of prostate cancer. ^{3,4} – Professor Richard Bryant

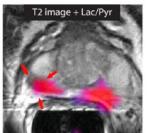

Primary Supervisor: Professor Richard Bryant

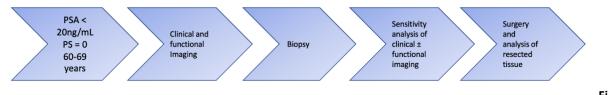
Additional Supervisors: Dr James Grist Eligibility: Track 3 and 4 students are eligible to apply for this project.

Abstract

Approximately 190,000 invasive prostate biopsy procedures are performed each year in the UK alone. The current standard of care recommends the use of pre-biopsy MRI scan to improve the accuracy of the prostate biopsy. Despite the success of using the '*Prostate Imaging Reporting And Data System*' (PI-RADS) (1) score (and similar scores such as the Likert score) in the reporting of MRI scan images ahead of targeted prostate biopsy, around 5-15% of clinically significant cancers would potentially be missed if individuals with an elevated age-specific PSA and normal clinical imaging did not receive a prostate biopsy. It is difficult to derive precise figures, but this would likely amount to several thousand men with a delayed or missed diagnosis of clinically significant prostate cancer each year in the UK alone, the clinical impact of which is currently unknown.

Whilst changes in imaging contrast due to tumour growth tend to be slow, primarily due to the inherently low sensitivity of clinical MRI, alterations in the motion of water (due to the restriction of motion by highly cellular regions of cancerous tissue) and the




Figure 1

direct metabolic reprograming of cancerous cells to upregulate production of lactate to fuel proliferation (known as the "Warburg Effect") can be harnessed to potentially provide early detection of prostate cancer (2). Indeed, the first in-human trial using hyperpolarised MRI demonstrated the ability of this technique to detect oncological metabolism in the absence of conventional imaging alterations (see Figure 1 showing cancerous metabolism in both the left and right sides of the prostate, with conventional imaging showing changes only on the right side), and Restricted Spectrum Imaging (RSI) has been shown to be highly sensitivity in the detection of prostate cancer (3).

We have experience in advanced imaging techniques to study neurological and cardiovascular disease, and now is an opportune time to expand these techniques to benefit the oncological arena, this being an area of important unmet clinical need for prostate cancer. The DPhil student will work with the surgical and radiological teams to recruit and image a cohort of 40 men aged between 60-69 years (as defined by power calculations from previous studies in Oxford) being investigated for possible prostate cancer. Participants will receive standard of care pre-biopsy MRI imaging, with the functional MRI appended to the end of the clinical session. The biopsy process will be performed based on the clinical imaging, as per our current practice. Of the N = 40 men in this pilot study, 10 individuals will have a normal (PIRADS 1-2) pre-biopsy MRI, 10 individuals will have an equivocal (PIRADS 3) MRI, and 20 will have a 'suspicious' (PIRADS 4-5) pre-biopsy MRI. The inclusion of patients with either a PIRADS 1-2 or a PIRADS 3 MRI is important given that individuals in the age range of 60-69

years often have diffuse PIRADS 3 change within the peripheral zone of the prostate gland due to their young age. All 40 individuals will undergo prostate biopsy following the performance of the clinical and functional scans, with targeted and systematic biopsy cores being obtained for the N = 30 men with clinical lesions (PIRADS 3-5), and systematic biopsies alone being obtained for men with a normal (PIRADS 1-2) clinical imaging, as per our current protocol. The clinical and functional MR images will then be correlated with the final prostate biopsy pathology, to test the hypothesis that some clinically significant prostate cancer cases may solely be visible on functional MRI and not on standard clinical imaging. This approach will improve sensitivity of detection – with RSI acquisitions, if shown to be beneficial in the detection of prostate cancer, ready to be run in clinical practice in every patient in our NHS trust, and beyond, and hyperpolarised MRI offered as a clinical scan in targeted patients at a later time point (2-5 years). In turn, this will benefit many men being investigated for possible prostate cancer using MRI scans as part of the clinical pathway.

We currently have an ethics application going through internal review to enable this project. See figure 2 for the workflow for this project.

Research objectives

The two key objectives for this DPhil project are:

- <u>To establish repeatable imaging protocols for assessing functional and clinical MRI within the prostate.</u> A sub-cohort (N = 20, 5 from each PI-RADS group) of patients and healthy controls (N = 8) will undergo test re-test imaging on the same day to assess for the repeatability of imaging results. **Collaborators required:** Dr James Grist, Dr Ruth MacPherson, Professor Damian Tyler. **Outcome:** Presentation of results at leading radiological conferences (European Congress of Radiology, International Society of Magnetic Resonance in Medicine), and publication of results in a leading medical imaging journal.
- 2) To perform a clinical study assessing the added value of functional MRI to the routine clinical protocol. The data from the full cohort of patients will be analysed to assess for the sensitivity and specificity of the clinical, functional, and combined imaging approaches for the detection of biopsy proven clinically significant prostate cancer. Collaborators required: Dr James Grist, Dr Ruth MacPherson, Dr Richard Colling, and Professor Ian Mills. Outcome: Presentation of results at a leading radiological conference and publication of results in a leading medical journal.

Translational potential

If successful, this project will enable the early detection of clinically significant prostate cancer in a cohort of patients undergoing investigation for possible prostate cancer, who might otherwise have a delayed or missed diagnosis. However, the further clinical translation and impact of this project will be felt from the incorporation of these additional functional MRI approaches into clinical practice in Oxford and beyond – thus benefitting a larger population of patients with suspected prostate cancer. However, beyond this impact there is also the potential to apply these advanced imaging methods to other cancers, to detect early therapeutic response to chemo/radiotherapy – for example paediatric brain tumours, renal cancer, and breast cancer.

Training opportunities

The student will be provided with training in clinical research and patient recruitment by Professor Richard Bryant, and will be provided with training from Professor Damian Tyler and Dr James Grist in MRI physics, data acquisition, image reconstruction and quantitative post-processing for both hyperpolarised MRI and RSI. Further training in image co-registration will be provided. Dr Ruth MacPherson will provide training in clinical image analysis and interpretation, and Dr Richard Colling will provide training in histology and will work with Professor Ian Mills to complement this with molecular phenotyping of cancerous tissue. By the end of the project, the student will have a wide-ranging skill set that will be of great benefit to further their career in clinical research.

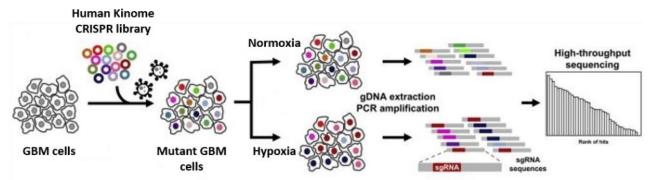
References

1. Turkbey B, Rosenkrantz AB, Haider MA, et al.: Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. *Eur Urol* 2019; 76:340–351.

2. Nelson SJ, Kurhanewicz J, Vigneron DB, et al.: Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate. *Sci Transl Med* 2013; 487:109–113.

3. Brunsing RL, Schenker-Ahmed NM, White NS, et al.: Restriction spectrum imaging: An evolving imaging biomarker in prostate MRI. *J Magn Reson Imaging* 2017; 45:323–336.

25. Investigating Hypoxic Adaptation in Glioblastoma (GBM) Stem Cells through Pooled Kinome-Wide CRISPR-Cas9 Knockout Screen ³ – Dr. Sneha Anand


Primary Supervisor: Dr. Sneha Anand Additional Supervisors: Prof. Daniel Ebner Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Glioblastoma (GBM) is a highly aggressive brain tumour characterized by its resistance to treatment and invasive nature. Central to this resistance is the existence and chemo-radiotherapeutic resistance of glioblastoma stem cells (GSC) within a hypoxic core of the tumour. Hypoxia, a condition of low oxygen availability, is a critical feature of the tumor microenvironment (TME) that promotes GBM progression, migration, immune evasion, and therapy resistance and could be a major factor in the generation of recurrent GBM which leads to poor survival outcomes of GBM patients. Protein kinases, involved in various signalling pathways, have been implicated in the response of cancer cells to hypoxia (Astrid A Glück 2015). They are attractive targets for cancer therapy due to their critical roles in oncogenic processes and the availability of kinase inhibitors. In the context of hypoxia, molecular crosstalk between Hypoxia Inducible factors (HIFs) and protein kinases plays a crucial role in modulating cellular responses to low oxygen levels. Dysregulated kinase activities are common in cancer, and hypoxia can further disrupt the cellular kinome network, enhancing the robustness of oncogenic pathways. Targeting hypoxia-dependent kinase signalling hubs holds the potential for attenuating the survival advantages conferred by hypoxic adaptation. In this research proposal, we aim to investigate the molecular basis underlying the adaptation and survival of GSC cells in hypoxia. We propose to conduct a pooled kinome-wide CRISPR-Cas9 knockout screen using a lentiviral single guide RNA (sgRNA) library that targets human kinases (John G Doench 2016). The goal is to identify key kinases that contribute to the hypoxic adaptation of GBM cells, potentially uncovering new therapeutic targets for GBM treatment.

Research objectives

This research project aims to investigate the molecular mechanisms underlying hypoxic adaptation in GBM using patientderived GSC lines. GSCs are known to play a significant role in tumor initiation and recurrence, and hypoxia promotes their self-renewal and invasive properties. The study involves characterizing GSC behaviour in low oxygen conditions through hypoxia chamber culture, hypoxia marker staining, and analysis of hypoxia-inducible factor (HIF) expression using various techniques such as immunofluorescence staining, western blotting, or quantitative PCR. Following characterization, a kinome-wide CRISPR-Cas9 knockout screen (Fig.1) will be performed using a lentiviral sgRNA library targeting human kinases. The abundance of sgRNAs targeting kinases will be analysed through next-generation sequencing, and bioinformatics analysis will be conducted to identify kinases exhibiting differential knockout effects in hypoxic compared to normoxic conditions. The identified kinases will undergo functional characterization to understand their specific roles in hypoxic adaptation. Ultimately, the study aims to uncover potential therapeutic targets for disrupting hypoxia-dependent mechanisms in GBM.

Figure 1: Schematic illustrating the CRISPR knockout screen: Lentiviral transduction of patient-derived GSC lines with the sgRNA library to induce kinase knockout. Following this, cells will be divided into normoxia and hypoxia groups and maintained in their respective conditions for a specific duration. Genomic DNA extraction from cells in both normoxia and hypoxia groups. Next-generation sequencing to analyze the abundance of sgRNAs targeting kinases. Data processing to

determine sgRNA frequency and identify kinases significantly affected in hypoxic conditions compared to normoxic conditions.

Expected Outcomes:

- 1. Characterization of GSC Behaviour in Hypoxic Conditions: The study will provide insights into the behaviour of GSCs under hypoxic conditions. This includes understanding the activation of specific signalling pathways in response to low oxygen levels, such as the upregulation of hypoxia-inducible factors (HIFs) and their downstream target genes related to angiogenesis, glycolytic metabolism, and therapy resistance.
- 2. Identification of Hypoxia-Related Therapeutic Targets: The characterization of GSC behaviour in hypoxic conditions can lead to the identification of potential therapeutic targets specifically active in the hypoxic microenvironment. These targets may offer opportunities for the development of novel therapies aimed at disrupting hypoxia-mediated adaptations and improving treatment outcomes for glioblastoma patients.
- 3. Identification of Hypoxia-Responsive Kinases: Through the kinome-wide CRISPR-Cas9 knockout screen, the study will identify kinases that play a critical role in GBM cell survival and adaptation in hypoxia. This information can provide valuable insights into the molecular mechanisms underlying hypoxic adaptation in GBM.
- 4. Potential Therapeutic Targets: The study will yield a list of kinases whose inhibition could potentially attenuate the survival advantages conferred by hypoxia in GBM. These kinases may serve as promising targets for the development of novel anti-GBM therapies, with the aim of enhancing treatment efficacy and overcoming drug resistance associated with hypoxia.
- 5. Manuscript Generation: The research project aims to generate two manuscripts from the study, highlighting the findings, methodologies, and implications of the research. These manuscripts will contribute to the scientific literature and would benefit other researchers and clinicians in the field.

Translational Potential

Understanding the molecular basis of GBM cell adaptation to hypoxia is crucial for developing effective treatment strategies against this aggressive brain tumor. The identified kinases can be further investigated for their roles in hypoxia-mediated processes, such as angiogenesis, metabolism, and immune evasion. Additionally, functional validation studies can be conducted to confirm the impact of specific kinases on GBM cell behavior under hypoxic conditions.

Overall, the findings from this study will contribute to a deeper understanding of GBM biology and provide potential targets for the development of novel therapeutic strategies to improve patient outcomes in GBM treatment.

Training opportunities

This research project offers valuable training opportunities in CRISPR-based cell screening, cell biology, molecular biology, and bioinformatics analysis. The student will learn essential techniques for gene editing, high-throughput screening, and cellular manipulation. They will gain hands-on experience in cell culture, molecular biology techniques, and an introduction to bioinformatics data analysis. The project will enhance their skills in experimental design, data interpretation, literature review, and scientific writing. Overall, this project provides a solid foundation for their DPhil studies and future research in cancer biology and therapeutics.

References

Astrid A Glück, Daniel M Aebersold, Yitzhak Zimmer, Michaela Medová. 2015. "Interplay between receptor tyrosine kinases and hypoxia signaling in cancer." *Int J Biochem Cell Biol* 101-114.

Giaccia, E B Rankin & A J. 2008. "The role of hypoxia-inducible factors in tumorigenesis." *Cell Death & Differentiation* 678–685.

John G Doench, Nicolo Fusi, Meagan Sullender, Mudra Hegde, Emma W Vaimberg, Katherine F Donovan, Ian Smith, Zuzana Tothova, Craig Wilen, Robert Orchard, Herbert W Virgin, Jennifer Listgarten & David E Root. 2016. "Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9." *Nature Biotechnology* 184–191.

26. Investigating the adaptive immune responses to tumour neo-antigen and the impact on patient disease course. ^{3,4} –Assoc Prof. Rachael Bashford-Rogers

Primary Supervisor: Assoc Prof. Rachael Bashford-Rogers **Additional Supervisors**: Dr. Isabela Pedroza-Pacheco **Eligibility:** Tracks 3 & 4 eligible to apply for this project.

Abstract

B and T cell infiltration has prognostic significance in solid tumours, and ongoing studies are investigating their phenotypes through single cell transcriptomics and spatial imaging. Characterising the B and T cell response to tumour cells, particularly their antigenic specificities, will be key to developing more immunologically appropriate cancer therapies. Here we propose a DPhil studentship project to develop novel technologies to be able to bridge the gap between B and T cell population phenotypes, migration, and antibody/TCR reactivity, thus giving a unique perspective on the development of anti-self, anti-tumour and anti-non-self-responses. Therefore, this project will characterise the nature, function and migration of myeloid cells in primary and metastatic tumours, blood and lymph nodes to help direct us towards understanding and potentially modulating these cells for more targeted therapies. This project will involve the development a novel high-throughput method to probe the antigen specificities of B and T cells, which will be coupled with single cell resolution of clonal phenotype and single cell transcriptome. This will be used to investigate the development and role of tumour-infiltrating B and T cells across a range of tumours with varying degrees of immunogenicity. Single-cell RNA sequencing has emerged as a powerful tool to investigate cell-to-cell variation (Buettner et al., 2015). Having expertise in developing both novel experimental and computational methodologies for understanding immune-cell diversity and dynamics (Bashford-Rogers et al., 2019), as well as disease-specific pathology and genetics, we are in a unique position to combine single-cell RNA sequencing, clonal tracking through the BCR/TCR, and functional experiments.

Research objectives

This project aims to investigate the B and T cell immune response of circulating and tumour-infiltrating B cells across a range of tumours with different levels of immunogenicity and neo-antigen expression, including pancreatic and renal cancers. This will involve the development of a novel platform to answer key questions in the field of tumour immunology including:

- Defining whether B and T cell migration to lymph nodes reflect the response within the primary tumour.
- Determining if tumour-associated B cell subsets produce antibodies against self- or non-self antigen, poly-reactive, or highly specific to tumour cells, and how does tumour cell neo-antigen variation and expression level dictate antibody response and protection.
- Determining the balance of whether B and T cells serve a pro- or an anti-tumourigenic function.
- Investigating the spatial distribution of T and B cell anti-tumour clones within tumour tissue and determine their functional role during tumour immunosurveillance.
- Characterising the molecular mechanisms defining pancreatic B and T cell activation and regulation.
- Building computational models of immunosurveillance of tumours to help stratify patients for therapies and predict outcome.

Translational potential

This study will provide a unique platform to understand the probe between tumour neo-antigen, B and T cell immunesurveillance and specificity, and B and T cell phenotype, with the overall aim of highlighting improved therapeutic options and patient outcomes. Furthermore, the methods developed here will not just be broadly applicable to cancer, but will have wider applications in immunology and biotechnology. This will be achieved through the development and application of novel experimental and computational approaches, working in partnership with a global network of clinicians, immunologists and sample cohorts.

Training opportunities

The DPhil will gain experience and training in laboratory molecular biology and single cell methods, bioinformatics and immunology. These include:

- Cell sorting and single-cell RNA sequencing of patient samples.
- Development of novel experimental and computational pipelines for the analysis of novel single-cell datasets.
- Validation of associations using a wide range of immunological techniques.
- The project will work in partnership with a global network of clinicians, immunologists and sample cohorts.

The Bashford-Rogers laboratory has a strong track record of collaboration over the last 15 years and established systems for co-supervision. The postdoctoral fellows and the PIs will provide daily support and supervision when needed. The student will learn established protocols for imaging, advanced sequencing, and genomic analysis from existing postdoctoral and DPhil fellows. The candidate will be expected to participate in the weekly laboratory meetings and encouraged to present research at national and international meetings.

References

- (1) Pseudotime dynamics of T-cells in pancreatic ductal adenocarcinoma inform distinct functional states within the regulatory and cytotoxic T-cells (*iScience*, 2023) Ashwin Kumar Jainarayanan; Nithishwer Mouroug-Anand; Edward H. Arbe-Barnes; Adam J. Bush; Rachael Bashford-Rogers; Adam Frampton; Lara Heij; Mark Middleton; Michael L. Dustin; Enas Abu-Shah; Shivan Sivakumar
- (2) Activated regulatory T-cells, dysfunctional and senescent T-cells hinder the immunity in pancreatic cancer (*Cancers, 2021*) Shivan Sivakumar, Enas Abu-Shah, David Ahern, Edward H Arbe-Barnes, Nagina Mangal, Srikanth Reddy, Aniko Rendek, Alistair Easton, Elke Kurz, Michael Silva, Lara R Heij, Zahir Soonawalla, Rachael Bashford-Rogers, Mark R Middleton, Michael Dustin
- (3) Shared D-J rearrangements reveal cell of origin of TCF3-ZNF384 and PTPN11 mutations in monozygotic twins with concordant BCP-ALL (*Blood*, 2020) Clara Bueno, Paola Ballerini, Ignacio Varela, Pablo Menendez, Rachael Bashford-Rogers
- (4) Analysis of the B cell receptor repertoire in six immune-mediated diseases. (*Nature, 2019*) RJM Bashford-Rogers, L Bergamaschi, EF McKinney, DC Pombal, F Mescia, JC Lee, DC Thomas, SM Flint, P Kellam, DRW Jayne, PA Lyons, KGC Smith
- (5) The integrated genomic and immune landscapes of lethal metastatic breast cancer. (*Cell Reports*, 2019) Leticia De Mattos-Arruda, Stephen-John Sammut, Edith M. Ross, Rachael Bashford-Rogers, Erez Greenstein, Havell Markus, Sandro Morganella, Yvonne Teng, Yosef Maruvka, Bernard Pereira, Oscar Rueda, Suet-Feung Chin, Tania Contente-Cuomo, Regina Mayor, Alexandra Arias, Raza Ali, Wei Cope, Daniel Tiezzi, Dan Reshef, Elena Martinez, Vicente Peg, Santiago Ramon y Cajal, Javier Cortes, George Vassiliou, Gad Getz, Serena Nik-Zainal, Muhammed Murtaza, Nir Friedman, Florian Markowetz, Joan Seoane and Carlos Caldas

27.Epigenetic control of cancer cell phenotypes via nuclear F-actin based chromosome motility. ³ – Prof. Eric O'Neil

Primary Supervisor: Prof. Eric O'Neil Additional Supervisors: Prof. Yang Shi Eligibility: Track 3 students are eligible to apply for this project.

Abstract

The hippo tumour suppressor pathway regulates tissue size in development and although the contribution of this pathway to cancer is evident from tumour models and pan-cancer transcriptomics, somatic mutations are rare⁴. Our research has demonstrated how epigenetic silencing of RASSF1A is responsible for YAP activation in human tumours and correlates with poor survival across all major solid malignancies. Such 'epigenetic plasticity' allows dynamic switching between phenotypes and supports progression of lesions and the appearance of cancer stem-like cells (CSCs) in solid tumours⁴². During development, increasing evidence implicates the co-factor YAP1 as a key determinant of phenotype by supporting pluripotency or differentiation through activation of distinct transcription programmes in response to RASSF1-hippo signalling⁵. Moreover, the hippo pathway transduces mechanical forces from the microenvironment to guide proliferation, stem cell behaviour and differentiation⁶. Our recent work has identified RASSF1A and MST2 reside at the nuclear envelope to sense mechanical force and influence both chromatin and nuclear actin. This project aims to consolidate these discoveries to understand how genomic motility between repressive heterochromatin and phase separated transcription factories are controlled by nuclear actin to influence cell phenotype. We will also explore how nuclear actin influences the stabilisation of cell phenotypes through rewiring DNA methylation, specifically 5'hmc by Tet2, to influence differentiation state and clinical outcome in pancreatic cancer.

Research Objectives

Defining the molecular mechanisms that influence cell fate will allow us to target the epigenetic plasticity behind tumour heterogeneity, progression and therapeutic resistance.

(*ii*) EON is an expert in hippo pathway signalling and epigenetics in pancreatic cancer and YS is an expert in epigenetic control of cell-phenotype in cancer.

This project asks three questions;

• How does RASSF1A regulation of nuclear actin affect chromatin at specific loci associated with pluripotency or differentiation?

Outcome: an understanding of how nuclear actin guides the movement of specific genes into regions of repressive chromatin or active transcription.

• Does mechanical force impact ATR-RASSF1A signalling to influence plasticity?

Outcome: defining specific extracellular or cytoplasmic cues that can trigger gene positioning and influence cell phenotype.

• Can targeting phenotypic plasticity improve therapy in PDAC?

Outcome: Can we promote differentiation in PDAC to improve therapeutic responses and survival?

Translational Potential

The potential of precision cancer medicine is limited by therapeutic resistance arising from tumour heterogeneity. Heterogeneity underpins cancer progression and results from a combination of genomic instability and epigenetic plasticity; the dynamic alterations of the epigenome responsible for establishing cell phenotype. The tumour microenvironment governs epigenetic plasticity but exactly how multiple states are generated and maintained unknown⁷. Personalised therapies targeting driver mutations are largely circumvented by the presence of genetically diverse resistant subclones. In contrast, epigenetic plasticity is reversible and an attractive target to prevent resistant phenotypes appearing or to revert phenotypes of recalcitrant populations (e.g. cancer stem-like cells) to improve overall therapeutic efficacy. Moreover, as plasticity in tumours can result in genome instability⁸, the underlying alterations may highlight specific vulnerabilities not apparent from genetics alone. To understand how plasticity

occurs in tumours, we need to understand how the mechanisms governing cell phenotype are influenced by epigenetics and microenvironmental cues.

The genome kinases ATM and ATR phosphorylate RASSF1A-Ser131 to influence chromatin, transcription, and DNA replication. We now know that this influences plasticity and have shown how a SNP in *RASSF1* (rs2073498) encodes a mutation, RASSF1A^{A1335}, that disrupts phosphorylation at Ser131⁹, blocks the formation of nuclear actin (preliminary data) and hinders differentiation. RASSF1A^{A1335} is prevalent in Caucasian populations with a minor allele frequency (MAF) of ≤ 0.17 in European cohorts and associates with early onset tumorigenesis in multiple cancers. We generated *Rassf1*^{A1335} mice that accelerate pancreatic and colorectal tumour models, supporting the hypothesis that RASSF1A maintains differentiation and prevents phenotypic plasticity in human tumours. This model gives us the opportunity to direct model an emerging pathological SNP in humans, while also provide a platform for strategies to intervene in hyperplastic phenotypic model.

Training opportunities

In addition to standard cell culture assays the candidate will receive training in high content and real-time microscopy, epigenetics (inc ChIPseq, bioinformatics), phase separation and transcription factories, nuclear F-actin filaments etc. In addition, there are opportunities to explore the in vivo relevance in mouse models of pancreatic cancer.

References:

1. Wu, D. *et al.* Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. *Nature* 559, 637-641 (2018).

2. Eyres, M. *et al.* TET2 Drives 5hmc Marking of GATA6 and Epigenetically Defines Pancreatic Ductal Adenocarcinoma Transcriptional Subtypes. *Gastroenterology* 161, 653-668 e616 (2021).

3. Chatzifrangkeskou, M. *et al.* RASSF1A is required for the maintenance of nuclear actin levels. *EMBO J* 38, e101168 (2019).

4. Harvey, K.F., Zhang, X. & Thomas, D.M. The Hippo pathway and human cancer. *Nat Rev Cancer* 13, 246-257 (2013).

5. Papaspyropoulos, A. *et al.* RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. *Nat Commun* 9, 424 (2018).

6. Dupont, S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. *Exp Cell Res* 343, 42-53 (2016).

7. Easwaran, H., Tsai, H.C. & Baylin, S.B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. *Mol Cell* 54, 716-727 (2014).

8. Pefani, D.E. *et al.* RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. *Nat Cell Biol* 16, 962-971, 961-968 (2014).

9. Yee, K.S. *et al.* A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. *Cancer Res* 72, 2206-2217 (2012).

28. Describing T Cell recognition of tumours by machine-learning and statistical models ⁴ – Assoc Prof. Hashem Koohy

Primary Supervisor: Assoc Prof. Hashem Koohy Additional Supervisors: Prof. Alison Simmons Eligibility: Track 4 students are eligible to apply for this project.

Abstract

T cell recognition of a cognate peptide-MHC (pMHC) complex presented by infected/malignant and/or specialized antigen presenting cells is crucial for orchestrating a robust and sustained immune response. The molecular interactions between heterodimeric T Cell Receptors TCRs and pMHC ligands dictate the nature of the subsequent adaptive immune response. However, the underlying rules governing this engagement remain incompletely understood (1). A better understanding of TCR:pMHC interactions would allow further harnessing of adaptive T cell immunity, to assist in the development of vaccines and therapeutics and/or preventive strategies. This research in Koohy's group is focused on development of machine-learning and statistical models to help a better understanding the two key components of the interaction, namely the architecture and composition of the immune repertoire during the course of disease or treatment, and b) identifying the immunogenic T cell epitopes that can be used as targets for vaccines or immunomodulatory treatments. In this project, we will be investigating the extent to which T cells are involved in driving intestinal inflammation after Immune Checkpoint Blockade (ICB), and more importantly, the source of their antigen specificity. Additionally, we will be further exploring the statistical characteristics of T cell targets in cancers to derive accurate in silico predictions of cancer neoantigens (2).

Research objectives

The development of Immune Checkpoint Blockade ICB treatment for cancer, has revolutionized patient care. However, not all patients respond uniformly, and a subset experience immune-related adverse events irAEs, such as Checkpoint Induced Colitis CIC. Gastrointestinal inflammation, including CIC, affects a substantial proportion of patients treated with ICB, leading to treatment discontinuation. The underlying mechanisms of CIC remain poorly understood, although emerging evidence suggests dysregulated activation of T cells, potentially triggered by self-antigens or commensal microbes. Our ongoing collaborative project with Prof Alison Simmons and Dr Agne Antanaviciute has revealed clonally expanded CD8 T cells trafficked from blood to inflamed tissue in CIC patients. However, the antigen specificity of these cells remains elusive. Therefore, this proposal aims to identify dysregulated T cells and uncover the main source of their antigen specificity in CIC patients.

In a broader context, this project also focuses on modelling and identifying biomarkers of response to ICB. Numerous factors influence the immune response to treatment, including the mutation burden, cytotoxic T cell infiltration, and defects in antigen processing and presentation among others. Recent advances in high-throughput sequencing technologies particularly single cell techniques, enable the measurement of these features at the single cell level in patient samples at various time points, spanning pre-treatment, treatment and post-treatment. To study the mechanisms underlying response heterogeneity, we employ statistical and machine learning models trained on high thought put sequencing data encompassing genomics, transcriptomics, T cell receptor repertoire and epigenomic data. However, due to limited data availability, many potentially predive features have not yet been integrated into statistical and computational approaches. Consequently, the scientific community requires more sophisticated methods capable of modelling confounding factors and leveraging comprehensive patient data.

Within our research group, we capitalize on the expertise of in-house specialists to generate diverse types of data and develop next generation mathematical and computational models for exploring the role of aforementioned factors in response heterogeneity. Additionally, we aim deorphanizing T cell receptor from cancer patients and gain insights into the underlying rules governing T cell interaction with tumours.

Translational Potential

Although cancer immunotherapies have revolutionized cancer treatment, not all patients respond equally and about 60% patients develop gastrointestinal inflammation. This project may inform the development of novel biomarkers predictive of inflammation and more broadly inform the development of treatment approaches requiring tailoring of peptide TCR interactions.

OXFORD CENTRE

Training Opportunities

The project offers training in T cell immunology, single cell technologies, their applications in immunology as well as their specific computational challenges. Successful delivery of the project will also require a good understanding of machine-learning and statistical inference preferably Bayesian Statistics. Training for both immunology and modelling will be provided by ourselves in the unit or within the Oxford University teaching and training schemes. We closely work with our collaborators including: Prof Alison Simmons^{3,4,5} and Dr Agne Antanaviciute to leverage the data from high-throughput technologies to investigate the molecular mechanisms of checkpoint colitis (3) and to study the heterogeneity and composition of intestinal antigen experienced immune cells mirrored by the composition of intestinal microbiome and their relevance to the outcome of the immune checkpoint blocked treatment. This is therefore a great opportunity to learn more about the applications of cutting-edge experimental single cell and spatial transcriptomics in action in addressing immunological and medical problems.

References

1. Hudson D, Fernandes RA, Basham M, Ogg G, Koohy H. 2023. Can we predict T cell specificity with digital biology and machine learning? *Nat Rev Immunol*: 1-11

2. CH Lee JH, PR Buckley, M Jang, MP Pinho, RA Fernandes, A Antanaviciute, A Simmons, H Koohy. 2022. A robust deep learning plafform to predict CD8+ T-cell epitopes. *BioRxiv*

3. Corridoni D, Antanaviciute A, Gupta T, Fawkner-Corbett D, Aulicino A, Jagielowicz M, Parikh K, Repapi E, Taylor S, Ishikawa D, Hatano R, Yamada T, Xin W, Slawinski H, Bowden R, Napolitani G, Brain O, Morimoto C, Koohy H, Simmons A. 2020. Single-cell atlas of colonic CD8(+) T cells in ulcerative colitis. *Nat Med* 26: 1480-90

29. Urological cancers beyond the microscope; novel multiomic analysis of features associated with DNA instability and the tumour immune micro-environment ^{3,4} – Assoc Prof. Clare Verrill

Primary Supervisor: Assoc Prof. Clare Verrill Additional Supervisors: Prof. Ian Mills Eligibility:

Abstract

Pathology is the study of disease and histopathologists analyse tissue samples to make diagnoses and assessments of how aggressively cancers might behave. Despite extensive specialist expertise and international efforts to optimise these assessments, they are inherently limited by the performance of human based observers. Current human based grading systems are imperfectly predictive and prognostic of disease behaviour. In addition, despite scientific advances stressing the importance of the tumour immune microenvironment, this feature is not routinely assessed as part of the diagnostic process, leaving large amounts of valuable information untapped.

Combinations of novel and powerful technologies such as spatial transcriptomic and AI image-guided whole genome sequencing have the potential to unlock new insights into disease biology. Some urological cancers lag behind many other cancer types in terms of understanding of disease behaviour, microenvironment and molecular drivers, consequently routine molecular testing is generally not currently undertaken as with other tumour types e.g. lung (ALK-1, EGFR).

Kidney and bladder cancers (renal cell carcinoma and urothelial carcinoma respectively) receive relatively little research investment and have poorer outcomes than many other cancers. These cancers are now eligible for immunotherapies such as PDL-1 inhibitors, but with variable success, which may in part be due to a lack of understanding of the tumour immune environment.

In this project we will undertake highly detailed multi-omic profiling (Nanostring GeoMx, AI image guided whole genome sequencing) of up to 20 kidney and bladder cancers. This discovery data set will be mined for the most scientifically valuable areas of the tumour and immune microenvironment and the most useful markers of particular populations of immune cells. In spite of their utility in providing biological insights, detailed multi-omic profiling is not feasible at scale. Hence we need to translate these into pipelines that can be resourced routinely, such as immunohistochemistry or even from morphological changes detected by AI on readily available H&E sections. We aim to test the most promising image analysis and immunohistochemical targets in a larger cohort of up to 500 cancers.

Ultimately this will enable us to look at the relationship between genomically unstable cancer cells, other cancer cells and the immune environment.

Research objectives

Academic value

i) Discovery - Detailed genomic, transcriptomic and image analysis AI profiling of up to 20 kidney and bladder cancers (renal cell carcinoma and urothelial carcinoma respectively) with a particular emphasis on morphology and the immune microenvironment. Identify the scientifically most valuable areas within cancer cells and the immune cells themselves.
ii) Testing - Select from the discovery big data set, a panel of the scientifically most useful immunohistochemical immune or other tumour markers that indicate which particular populations are present and apply to up to 500 kidney and bladder cancers.

iii) Prediction and validation - Create AI based image analysis signatures (proxies) from H&E alone of the scientifically most valuable morphological changes and immune populations and test in a new validation cohort.

Cohorts with clinical outcomes, samples, patient consent and ethical approvals are all available and ready to use via previous initiatives.

Outcomes

i) Big data discovery set. Up to 20 kidney and bladder cancers with detailed -omic profiling using the Nanostring spatial transcriptomic platform, image guided low-pass whole genome sequencing (for copy number unstable cancer cells) and AI

based image analysis. This will guide the selection of a targeted panel of immunohistochemistry that will be undertaken on a larger scale (up to 500 cases) and analysed together with the routinely available morphology from H&E stains. **ii)** From (i) we identify the scientifically most valuable regions of interest in the cancers and including in the immune microenvironment and evaluating the inter-play between cancer and immune cells. We then aim to translate this into H&E based morphological signatures derived by image analysis AI that could be translated into clinical use at scale.

Collaborators

In this project, the DPhil candidate will work with a unique team of urological histopathologists (Verrill), scientists (Mills, Rao), data scientists (Woodcock) and engineers with international expertise. The team have a number of established collaborative projects in this field and have created an exciting programme of work around histogenomic associations linking novel AI based image analysis with molecular based genomic and transcriptomic sequencing (bioRxi). Issa and Hester (TRIG) bring expertise in the tumour microenvironment. Mills is a highly experienced DPhil supervisor.

The programme leverages significant investment made via the AI Imaging Centre of Excellence "PathLAKE" with Oxford hosting one of the UK's first fully digital NHS histopathology laboratories with live clinical AI technologies [ref press release]. The project also builds on cohorts and collaborative work with industry partner Janssen Biotech Inc. (Cartography) and pump priming funds from the University of Oxford Medical and Life Sciences Translational Fund.

Translational potential

The project will create novel objective and quantitative ways of analysing urological cancers above and beyond that which can be achieved with human-based pathological assessments which are largely qualitative and inherently subjective. In addition, there will be particular emphasis on the immune microenvironment which is currently not analysed routinely in these cancers. Ultimately the findings will be evaluated by the end of the DPhil for the most promising which in the medium to longer term can be further developed and leverage further funding via market opportunities or funding bodies.

Training opportunities

The successful candidate will gain a detailed understanding of urological cancer histopathology (Verrill). They will be able to gain laboratory experience within histopathology (sectioning, immunohistochemical staining), whole genome sequencing and bioinformatic analysis (Rao), spatial transcriptomic experimental design and analysis (Issa, Hester), integration of diverse datasets and machine learning (Woodcock) and deep learning for image analysis.

References

1) Srinivasa Rao, Verrill Clare. et al: Intra-prostatic tumour evolution, steps in metastatic spread and histogenomic associations revealed by integration of multi-region whole genome sequencing with histopathological features. bioRxiv 2023.02.27.530113; doi: https://doi.org/10.1101/2023.02.27.530113

2) Chatrian A, Colling RT, Browning L, Alham NK, Sirinukunwattana K, Malacrino S, Haghighat M, Aberdeen A, Monks A, Moxley-Wyles B, Rakha E, Snead DRJ, Rittscher J, **Verrill C.** Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain prostate biopsies. Mod Pathol. 2021 Sep;34(9):1780-1794. doi: 10.1038/s41379-021-00826-6. Epub 2021 May 20.

3) Haghighat M, Browning L, Sirinukunwattana K, Malacrino S, Khalid Alham N, Colling R, Cui Y, Rakha E, Hamdy FC, **Verrill C**, Rittscher J. Automated quality assessment of large digitised histology cohorts by artificial intelligence. Sci Rep. 2022 Mar 23;12(1):5002. doi: 10.1038/s41598-022-08351-5. PMID: 35322056; PMCID: PMC8943120.

4) <u>Prostate cancer AI diagnosis tool begins evaluation in Oxford - Oxford University Hospitals (ouh.nhs.uk)</u>

5) Oxford expands the Cartography collaboration with Janssen — University of Oxford, Medical Sciences Division

Return to Projects list

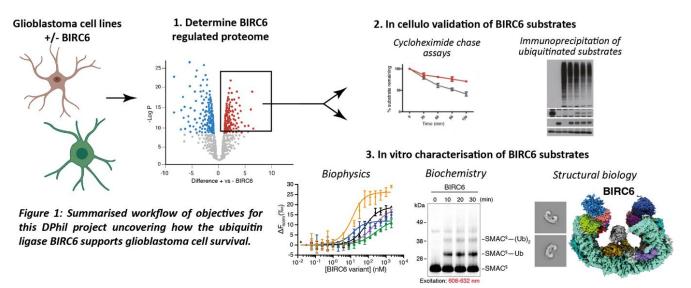
30. Investigating the role of the ubiquitin ligase BIRC6 in aneuploid glioblastoma cell survival ³ – Dr Paul Elliott

Primary Supervisor: Dr Paul Elliott

Additional Supervisors: Dr Vincenzo D'Angiolella

Eligibility: Track 3 students are eligible to apply for this project.

Abstract


Glioblastoma is a tumour with a dismal prognosis and few therapeutic options. The tumour is characterised by profound heterogeneity, fuelled in part by the presence of rampant genomic instability. Chromosomal instability is very frequent in glioblastoma cells and, so far, targeting aneuploid cells has proven difficult. A recent study identified co-essentiality of the ubiquitin ligases UBA6 and BIRC6 in a subset of tumours with high aneuploidy through a role in the integrated stress response and cell death (1). However, detailed understanding of mechanisms underpinning this dependency on BIRC6 and UBA6 are not known.

BIRC6 is a large (~5000 amino acid) E2/E3 ubiquitin ligase of the Inhibitor of Apoptosis family. Our recent structural and biochemical work has uncovered BIRC6 directly restricts executioner caspase-3 and -7 and through working exclusively with the non-canonical E1 UBA6, ubiquitinates caspase-3,-7 and – 9 and other substrates (2). Thus, BIRC6 seems to be a crucial sensor of aneuploidy to balance cell death decisions in aneuploid cells. The DPhil project will investigate how BIRC6 supports aneuploidy cancer cell survival particularly focussing functional biological studies on glioblastoma (3). The project will uncover the BIRC6–substrate interactome in glioblastoma and will biochemically, structurally and functionally characterise these interactions providing key insights into how BIRC6 enables aneuploid glioblastoma cell survival, crucial for informing novel future glioblastoma therapeutic strategies.

Research objectives

Objective 1: Uncovering BIRC6 regulated proteome in glioblastoma cell lines

To gain a mechanistic understanding of how BIRC6 enables aneuploid glioblastoma cell survival, we will determine the proteome regulated by BIRC6 in four glioblastoma cell lines chosen for differing levels of BIRC6 dependency and aneuploidy level. Through cutting-edge proteomics combined with Tandem Mass Tag (TMT) labelling, we will quantitatively compare complete proteomes of these cell lines upon knock-down of BIRC6. Gene ontology analysis will be used to identify pathways in which differentially regulated proteins are involved and thus regulated by BIRC6 in glioblastoma. Proteins that display most significant upregulation in BIRC6-dependent glioblastoma will then be the focus for the downstream objectives in which we will establish how each substrate identified contributes to regulate survival of glioblastoma cells.

Objective 2: Validation of BIRC6 substrates in glioblastoma cell lines

The most significantly upregulated proteins identified in Objective 1 will be assessed for capacity as BIRC6 substrates. This will be achieved through cycloheximide chase assays testing either endogenous substrates or epitope tagged substrates ectopically expressed at near endogenous levels to confirm substrate stability upon BIRC6 depletion. Candidate substrates identified will then be verified for interaction with BIRC6 in cellulo through immunoprecipitation methods. Further to these experiments, substrate degradation via ubiquitination will be confirmed through use of Tandem Ubiquitin Binding Entities (TUBEs) to immunoprecipitate ubiquitinated substrates followed by ubiquitin linkage type identification using established chain selective deubiquitinase profiling methods employed in the Elliott Lab. The substrates identified will also be analysed for their role in controlling DNA damage, chromosomal mitotic segregation and apoptosis. While we have chosen transformed cancer cell lines as initial models, we will confirm the findings in glioblastoma stem cell models with basal aneuploidy and/or induced aneuploidy, well established in the D'Angiolella Lab. Non-transformed neural stem cells will also be used to establish dependency of BIRC6 in normal tissues.

Objective 3: In vitro characterisation of BIRC6 substrates

Confirmed substrates will then be cloned, recombinantly expressed and purified through either *E.coli* or Sf9 expression systems. Recombinant substrates will be tested for ubiquitination by BIRC6 in established in vitro substrate ubiquitination assays using recombinant E1 ubiquitin ligase (UBA6) and fluorescently-labelled ubiquitin. The interactions between BIRC6 and novel substrates will then be characterised through structural biology methods including cryoEM and biophysical techniques well established in the Elliott Lab. Structure-function insights will be explored further through use of existing BIRC6 mutations where relevant or design of new structure-guided mutations.

Outcomes: This DPhil project will determine the BIRC6 substrate interactome in glioblastoma and will uncover how BIRC6 substrate specificity is achieved and how ubiquitination of these substrates enables glioblastoma cell survival. Together this project will provide the first detailed mechanistic insights into BIRC6 cellular function in aneuploid glioblastoma survival

Translational potential

This project will provide crucial detailed insights into how BIRC6 supports aneuploid glioblastoma cell survival. We have the longer-term vision of translating our cellular, structural and biochemical knowledge obtained to develop small molecule compounds that disrupt BIRC6 interaction with identified substrates for therapeutic use. Furthermore, considering most cancers feature aneuploidy, BIRC6 and its substrate interactome may be key molecular anti-cancer targets; therefore, through this project, the detailed cellular and molecular insights into understanding how BIRC6 is exploited in aneuploid glioblastoma will be important for informing cancer therapies more broadly.

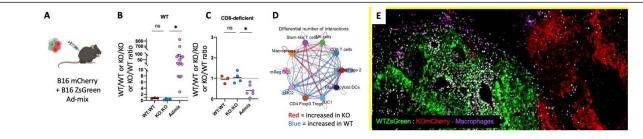
Training opportunities

This DPhil project provides an exciting opportunity to combine cancer cell biology methods with mass spectrometry and biochemistry, biophysics and structural biology techniques. The student will join a dynamic team and will develop a broad range of skills including: proteomics analysis methods, protein purification techniques, in vitro biochemical ubiquitin-related assays, structural biology (cryoEM) and, through working closely with Dr D'Angiolella's Laboratory, glioblastoma cancer cell biology methods. The student will also have multiple opportunities to present their findings at inter-departmental seminar series and national and international conferences.

References

- 1. Cervia, L. D. *et al*. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas. *Cancer Discov* (2022) doi:10.1158/2159-8290.cd-22-1230.
- 2. Dietz, L. *et al.* Structural basis for SMAC-mediated antagonism of caspase inhibition by the giant ubiquitin ligase BIRC6. *Science* 379, 1112–1117 (2023).
- 3. Chen, Z. *et al.* A Human IAP-Family Gene, Apollon, Expressed in Human Brain Cancer Cells. *Biochem Bioph Res Co* 264, 847–854 (1999).

31. Characterising the NK/Myeloid crosstalk during tumour immune escape ³ – Assoc Prof. Audrey Gérard


Primary Supervisor: Assoc Prof. Audrey Gérard Second Supervisor: Claudia Monaco Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Cancer cells can be recognised and killed by our immune system. However, tumours developed strategies to evade the immune system by inhibiting the main immune cell type that can kill them, called CD8 T-cells. In recent years, immune therapeutics emerged to counteract this, called checkpoint blockade. This treatment aims to reinvigorate CD8 T-cells and has shown unprecedented success in treating aggressive cancers. However, some patients who initially responded to checkpoint blockade become refractory. One of the reasons is because cancer cells once again evade the attack induced by the CD8 T-cells reactivated by checkpoint blockade. Often, they do so by mutating and blocking the effect of a specific immune mediator, IFNy. This project aims to understand whether the immune system can adapt to those mutated tumour clones, and whether we can leverage this to reinvigorate the immune system yet again. Our data show that immune cells other than CD8 T-cells become activated following this secondary escape. They are monocytes and NK cells, and importantly, they also have the potential to kill cancer cells. We will study the crosstalk between monocytes and NK cells to understand if it is beneficial or detrimental to anti-tumour immunity. To do this, we will recreate IFNy-dependent tumour escape and explore when the NK/monocyte crosstalk arises, where it happens and the effect of manipulating this crosstalk on the anti-tumour response. The goal is to understand how to leverage this newly generated immune response to provide alternative strategies to control tumours.

Research objective

Tumours actively escape the immune system by inducing an immunosuppressive state where intra-tumoural CD8 T-cells are "exhausted", lacking effector functions. Checkpoint blockade is a therap designed to reinvigorate those exhausted T-cells. It has shown unprecedented success in treating aggressive cancers such as metastatic melanoma¹. But the response rates are still only 15 to 30%, in part because tumours have developed escape strategies checkpoint blockade. The most reported pressure in this context is induced by CD8 T-cells. Patients who progressed after initially responding to checkpoint blockade often carry tumours deficient in IFNy signalling pathway². IFNy exerts cytotoxic or cytostatic effects on tumours and induces Major histocompatibility complex (MHC) expression. MHC expression is necessary for CD8 T-cells to recognise and kill tumour cells. Therefore, down-regulation of the IFNy pathway leads to tumour escape by inhibiting T-cell recognition. How the immune system responds to this has been largely overlooked. They however have the capacity to do so. For example, we recently found that CD8 T-cells sense

Figure 1: Immune adaptation to IFNy-dependent tumour escape. A- Control (WT-Zsgreen) and IFNyRKO (KO-mCherry) B16 melanoma tumour cells, were ad-mixed, as indicated, and engrafted in WT mice. (B-C) After 12 days, tumours were harvested, and single cell suspension obtained. Graph shows the ratio between the different tumour types, quantified by flow cytometry in WT (B) and CD8-deficient (C) mice. Every dot is a mouse. D- We performed single cell RNA sequencing on immune cells from WT and KO tumours. The graph displays the putative strength of interactions between immune cell subsets. Cells linked by blue lines represent communication observed in WT tumours. Cells linked by red lines represent communications observed in KO tumours. E- Ad-mixed WT and KO tumours were fixed and imaged by confocal microscopy. Macrophages (purple) were stained with F4/80 antibodies.

IFNγ present in the tumour microenvironment, which restricts their anti-tumour response³. The paradigm is that immune cells, in particular T-cells, are inhibited or simply can no longer recognise cancer cells. To what extent immune cells adapt to tumour escape and whether this can be leveraged, is unknown. In this context, NK cells have emerged as a potential immune target to trigger an immune response against tumour cells that downregulated the expression of MHC molecules. But we don't know how cancer cells and the immune microenvironment affect NK cell fitness.

To recapitulate escape, we use a simple system where we engraft mice with an ad-mix WT tumour clones and "escapee" tumour clones that do not express the IFNyR (KO). Each clone expresses a different fluorescent protein (ZsGreen or mCherry) to track them (Fig.1A). In this model, KO tumour clones indeed escape and overtake WT clones (Fig.1B). This escape does not happen in mice that do not produce CD8 T-cells (Fig.1C), as CD8 T-cells kill WT tumours rather than KO tumours. However, NK cells, which have been suggested to take over and kill KO tumours, do not seem to do so efficiently. Sequencing of the immune microenvironment of WT and KO tumours demonstrates that escape is characterised by the emergence of crosstalk between NK and Macrophages (red lines, Fig.1D). Most macrophages in tumours are inhibitory, and we previously visualised their pro-tumour function during metastasis⁴. The overall hypothesis is that the NK/macrophage crosstalk inhibits NK cell fitness, and that we can find strategies to target this crosstalk to improve anti-tumour immunity against escape mutants.

Research Objectives:

i) Explore the emergence of the NK/Macrophage interplay as escape occurs and its potential implication on escape efficiency. You will harvest tumours at different time points and correlate the phenotype of NK and myeloid cells with the "extent" of tumour escape. Tumour escape can be quantified by tumour growth and the ratio between WT and KO tumours either by flow cytometry or using IVIS spectrum in vivo imaging. Cell phenotype can be assessed by high-dimensional flow cytometry. You will also deplete NK cells or myeloid cells and study how they influence tumour escape.

ii) Investigate the co-dependency and mediators of the NK/Myeloid crosstalk. Using ex vivo functional assays, you will study NK cell fitness over time, as escape occurs, and the relevance of myeloid cells for NK functions. Using our already generated transcriptomics dataset, you will identify and test candidate pathways that can interfere with NK differentiation and function. For example, you will test known mediators of NK/Myeloid cell communication such as IL12/18/15, based on our preliminary analysis of transcriptomics data pointing to IL18 as a mediator of NK/Myeloid cell communication in IFNyRKO tumours.

iii) Explore the spatial relationship between tumour escapees and the immune response to understand how it fuels tumour escape. Newly generated data in the lab demonstrate that IFNγ-dependent escape leads to segregation between WT and KO cancer cells. We hypothesise that KO and WT regions are populated by distinct immune states, potentially contributing to KO tumour escape. Preliminary analysis shows that Macrophages are located at the margin of the tumour (Fig.1D). In addition, our scRNAseq data suggest that NK cells and Macrophages attract each other and reside in the same niche, excluding NK cells from the core of the tumours. We will define the localisation of NK cells and different myeloid populations in WT, KO, or admixed tumours. To analyse immune cells of interest in different regions, you will use confocal microscopy and light-sheet microscopy, available at the Kennedy Institute. We hypothesise that NK cells are colocalised with Macrophages at the periphery of tumours, restricting their action.

<u>Outcome</u>: This project will unravel the relevance of the NK/Macrophage crosstalk for tumour escape, identifying key pathways by which immune cell sense and adapt to changes in the tumour landscape. This will uncover potentially targetable new mechanisms by which tumours respond to immune pressure.

Translational potential

This project will help us understand the relevance of the NK/myeloid interplay on tumour escape and whether we can leverage our acquired knowledge on this pathway to counteract IFN_Y-dependent tumour escape. The recent discovery that down-regulation of the IFN_Y pathway is a major escape mechanism secondary to strong immune pressure makes this project timely and relevant. Understanding how IFN_Y reshapes anti-tumour responses will be key to offer new strategies to overcome immune escape. NK cells are often found in small numbers in tumours, and therefore have not received much attention. But they emerge as key to control MHClow tumours, and we need to better understand how to increase their homing to tumours and which signals lead to their inhibition. This is important, and multiple cellular therapies aim to use NK cells.

Training opportunities

The student will be based at the Kennedy Institute of Rheumatology which is a world-renowned institute and is housed in a state-of-the-art research facility. This project provides broad training in cancer biology and immunology covering a range of cellular, molecular and functional immune assays. Students have access to cutting-edge technologies such as disease mouse models of cancer, NK/Monocytes co-cultures systems, multiplex imaging.

References

1. Iwai, Y., Hamanishi, J., Chamoto, K. & Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24, 26 (2017). 2. Gao, J. et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell 167, 397-404 e399 (2016). 3. Mazet, J.M. et al. IFNgamma signaling in cytotoxic T cells restricts anti-tumor responses by inhibiting the maintenance and diversity of intra-tumoral stem-like T cells. Nat Commun 14, 321 (2023). 4. Headley, M.B. et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531, 513-517 (2016).

32. The impact of Hypoxia on HLA-E surface expression and peptide presentation³ – Assoc Prof. Geraldine Gillespie

Primary Supervisor: Assoc Prof. Geraldine Gillespie Second Supervisor: Prof. Jane McKeating Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Human leukocyte antigen E (HLA-E) is a non-classical MHC protein whose primary function involves the regulation immunity via an NK cell axis ¹. This system involves HLA-E binding to conserved 9 amino acid leader sequence peptides (termed 'VL9') from classical major histocompatibility complex class I (MHC Ia) proteins ². Once expressed at the cell surface, HLA-E-VL9 complexes are recognised by inhibitory CD94-NKG2A receptors expressed on NK cell. When MHC la expression is absent or reduced, during viral infections or following malignant transformation to evade T cell recognition, limited VL9 leader peptide availability reduces HLA-E-VL9 surface expression, causing loss of NKG2A binding, and subsequent NK cell-mediated attack. However, there are contexts where HLA-E can present unusually diverse, non-VL9 peptides to CD8+ T cells, suggesting an unanticipated role for HLA-E in the context of T cell immunity ^{3,4}. This previously undiscovered role is exciting and offers potential for 'universal' vaccine development as only two functional allotypes of HLA-E in humans have been reported in contrast to the enormous diversity of MHC la allotypes. Should HLA-E share the same ability to target broad, sequence diverse peptide repertoires, it offers an alternative and exciting platform for novel therapeutic strategies, especially for tumours where HLA-E is up-regulated. One of the many important factors affecting the physiology of cancer cells is the local oxygen tension. Hypoxia or low oxygen levels are a hallmark of solid tumours and associate with poor prognosis. A hypoxic microenvironment enhances the proliferation and invasiveness of tumour cells, impairs drug delivery and promotes evasion of host immune responses. Hypoxia can negatively regulated MHC la expression, however, the impact on HLA-E has not been explored.

Research objective

The tumor microenvironment comprises the tissue surrounding and interacting with the tumor such as extracellular matrix, vasculature, stromal cells, and immune cells, as well as the oxygen concentration and pH levels. Hypoxia develops as a proliferating tumor outgrows its surrounding vasculature leading to reduced oxygen levels. Hypoxia-inducible factors (HIFs) regulate oxygen homeostasis and activate the transcription of many genes involved in angiogenesis, metastasis, and immune suppression. To be recognized by CD8+ T cells, antigens need to be processed by the antigen processing and presentation machinery and presented on the cell surface in complex with a MHC Ia molecule. Hypoxia has been reported to regulate MHC Ia in a cancer type-specific manner with some studies reporting an upregulation in melanoma and colorectal cancer cell lines ^{5,6}. In contrast other studies report a hypoxic mediated down-regulation of MHC-I in sarcoma and pulmonary tumor mouse models ⁷, non-small-cell lung cancer models ⁸ and multiple myeloma ⁹. A single report reported that hypoxia increased HLA-E ¹⁰, highlighting a need for further studies. We hypothesize that a hypoxic tumour microenvironment will affect the cell surface expression and/or alter the peptide presentation profiles of HLA-E on cancer cells.

This project will examine the effect of hypoxia on HLA-E expression in various cancer cell lines such as human papilloma virus associated cervical cancer cell lines, hepatitis B virus infected human hepatoma cells with viral integrants. In collaboration (Prof. N. Ternette) we will explore the impact of hypoxia on the HLA-E peptide repertoire using mass spectrometry. Parallel experiments will study the efficacy of pre-defined HLA-E restricted T cells recognition of tumour cell lines (for which we have previously defined cancer epitopes) under hypoxic conditions. We have access to a range of pharmacological agents and licensed drugs that modify HIF activity to define underlying mechanisms. An understanding of the relationship between HLA-E and hypoxia, and the molecular biology underlying altered expression would provide a significant advance in our understanding of a topic that is currently neglected, but crucially important from a cancer-targeting perspective.

Translational potential

The near monomorphic nature of HLA-E combined with its dysregulation on certain cancer cells highlights its potential as an immunotherapeutic target. Understanding the impact of hypoxia on HLA-E and the peptide repertoire presented could facilitate targeting by peptide specific T cells or by antibodies that recognise peptide-HLA-E (TCR 'mimics'). If instead, HLA-E is downregulated, this information could advance targeting of cancer cells via NK cell-based approaches. Either of these approaches could be combined with pharmacological agents that modify HIF activity to amplify the relevant immune-

therapeutic targeting. Elucidating the effect of hypoxia on HLA-E surface expression and antigen presentation provides new therapeutic opportunities to harness and regulate different arms of the immune response.

Training opportunities

This project will be co-supervised by Geraldine Gillespie and Jane McKeating who provide complementary expertise in HLA-E biochemistry, structural biology, T cell immunology, molecular virology and hypoxia biology. The interdisciplinary project will provide a unique training environment in cancer immunology and range of techniques will be offered including molecular, biochemical and in vitro models of T cell suppression of cancer cells. Transferable skills including oral presentations at joint lab meetings, critical reviewing of published scientific literature by contributing to journal clubs and scientific writing by reviewing and drafting manuscripts for publication.

References

1 Braud, V. M. *et al.* HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. *Nature* 391, 795-799, doi:10.1038/35869 (1998).

2 Braud, V., Jones, E. Y. & McMichael, A. The human major histocompatibility complex class lb molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. *Eur J Immunol* 27, 1164-1169, doi:10.1002/eji.1830270517 (1997).

Joosten, S. A. *et al.* Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. *PLoS Pathog* 6, e1000782, doi:10.1371/journal.ppat.1000782 (2010).

4 van Hall, T., Oliveira, C. C., Joosten, S. A. & Ottenhoff, T. H. The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. *Microbes Infect* 12, 910-918, doi:10.1016/j.micinf.2010.07.011 (2010).

5 Kukita, K. *et al.* Cancer-Associated Oxidase ERO1-alpha Regulates the Expression of MHC Class I Molecule via Oxidative Folding. *J Immunol* 194, 4988-4996, doi:10.4049/jimmunol.1303228 (2015).

6 Kajiwara, T. *et al.* Hypoxia augments MHC class I antigen presentation via facilitation of ERO1-alpha-mediated oxidative folding in murine tumor cells. *Eur J Immunol* 46, 2842-2851, doi:10.1002/eji.201646525 (2016).

7 Sethumadhavan, S. *et al.* Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. *PLoS One* 12, e0187314, doi:10.1371/journal.pone.0187314 (2017).

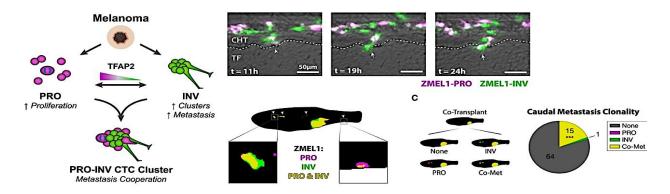
8 Koukourakis, I. M., Giatromanolaki, A., Mitrakas, A. & Koukourakis, M. I. Loss of HLA-class-I expression in nonsmall-cell lung cancer: Association with prognosis and anaerobic metabolism. *Cell Immunol* 373, 104495, doi:10.1016/j.cellimm.2022.104495 (2022).

9 Yu, Z. *et al.* An emerging prognosis prediction model for multiple myeloma: Hypoxia-immune related microenvironmental gene signature. *Front Oncol* 12, 992387, doi:10.3389/fonc.2022.992387 (2022).

Sasaki, T. *et al.* Microenvironmental stresses induce HLA-E/Qa-1 surface expression and thereby reduce CD8(+) T- cell recognition of stressed cells. *Eur J Immunol* 46, 929-940, doi:10.1002/eji.201545835 (2016).

33.An interdisciplinary approach to understand how interactions between proliferating and invasive melanoma cells can promote metastasis ⁴– Prof. Ruth Baker

Primary Supervisor: Prof. Ruth Baker


Second Supervisor: Prof. Helen Byrne and Prof. Richard White **Eligibility:** Track 4 students are eligible to apply for this project.

Abstract

Analysis of patient biopsies shows that melanomas are highly heterogeneous at both genetic and epigenetic levels. Singlecell sequencing has demonstrated at least five co-existing transcriptional cell states, including distinct proliferative versus invasive states. However, little is known about how these states coexist within tumours, whether they interact to promote metastasis and tumour progression, and/or whether cells switch between these states. The overarching aim of this project is to combine mathematical models with experimental data collected in the White Lab to provide new insights into these challenging questions.

Research objective

Background: Melanomas are heterogeneous, with multiple cellular phenotypes characterised by distinct transcriptional states [2,4]. At the extreme ends of these states are proliferative versus invasive subpopulations usually linked to the "go or grow" hypothesis. Recent *in vitro* experiments performed in the White Lab have shown that during metastasis, melanoma cells from these proliferative and invasive subpopulations spontaneously form spatially structured clusters, with invasive cells surrounded by an outer rim of proliferating cells. Additional *in vivo* experiments show that heterogeneous clusters, comprising proliferative and invasive cells, form secondary tumours, or metastases, at rates which are significantly higher than those associated with each subpopulation.

The mechanisms giving rise to these seemingly counter-intuitive observations are not well understood. Yet a better understanding of the process of metastasis will be key to the development of novel cancer therapeutics.

Aims and objectives: As such, the aim of the project is to develop mathematical models to analyse, interpret and integrate dynamic imaging data at the tissue scale, and high-resolution spatial transcriptomic data, from both *in vitro* and *in vivo* experiments. Repeated rounds of model-driven hypothesis generation and experimental validation will provide new understanding of how melanoma cell clusters form, and how their ability to metastasise depends on both the extent of heterogeneity and the spatial structure of the clusters. The project will initially consider just two cellular phenotypes, proliferative and invasive [2]. Subsequent extension of the models to include the five co-existing transcriptional cell states detailed in [4] will enable comparison of how the extent of phenotypic heterogeneity impacts metastasis. The objectives are:

- 1. To develop models of cluster formation based on the coagulation-fragmentation framework [5], and to calibrate models to quantitative data collected in the White Lab using computational Bayesian statistics approaches, to understand the mechanisms driving observed cluster size distributions.
- 2. To develop spatially resolved, cell-based models of cluster formation [1,3], in which individual cellular properties (such as rate of cell cycle progression and invasiveness) can be specified and, through careful calibration of the model to experimental data, to explore the mechanisms that give rise to the observed spatial structure of clusters.

3. To use the models developed in Objective 2 to predict how metastatic potential changes with cluster composition, and the extent of cooperation between the different cellular subpopulations.

Academic value of the research and funding justification: Funding for a DPhil student will enable us to transform understanding of how melanoma cell heterogeneity impacts metastatic potential. Progress on this challenging problem requires a multidisciplinary team with expertise across mathematical modelling, computational statistics, experimental biology, and image analysis. The funds will cover the costs of a graduate student who will carry out research in the Mathematical Institute.

Collaborations: The project will initiate a new collaboration between Professors Baker, Byrne and White. The student will make frequent visits to the White Lab where they will interact with lab members investigating melanoma metastasis. This will enable the student to learn the relevant melanoma biology, experimental techniques, and data analysis methods, and to contribute to experimental design. The team will meet with the student on a weekly basis.

Translational potential

This project will provide new insights into the processes driving melanoma metastasis, through the interrogation of largescale data sets using mathematical modelling and computational statistics. It will generate new methodologies for analysing multi-model data and strengthen expertise in multidisciplinary approaches to tackling cancer. As such, it will contribute to the scientific themes "Cancer big data" and "Early cancer detection".

Training opportunities

The student will receive training in mathematical modelling using differential equations, stochastic processes and cellbased models, as well as computational Bayesian statistics, image analysis, experimental design, and multidisciplinary research. Within the Mathematical Institute, the student will be part of the Wolfson Centre for Mathematical Biology, where they will take part in weekly mathematical oncology focus meetings and research skills training sessions, and attend formal weekly seminars. The student will also spend time in the White Lab, attending group meetings and relevant seminars at the Ludwig Institute for Cancer Research. Here, they will also have the opportunity to learn how to perform *in vitro* cell-based assays, if desired.

References:

- 1. J. A. Bull and H. M. Byrne (2023). <u>Quantification of spatial and phenotypic heterogeneity in an agent-based model</u> of tumour-macrophage interactions. *PLOS Computational Biology* 19:e1010994.
- 2. N. R. Campbell et al. (2021). Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. *Developmental Cell* 56:2808-2825.
- 3. F. R. Cooper et al. (2020). Chaste: cancer, heart and soft tissue environment. *Journal of Open Source Software* 5:1848.
- 4. D. Lumaquin-Yin et al. (2023). Liquid droplets are a metabolic vulnerability in melanoma. *Nature Communications* 14:3192.
- 5. J. A. D. Wattis (2006). An introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach. *Physica* D 222:1-20.

34. Exploring different modalities of growth factor inhibitor to treat cancer.³ – Dr. Jon Elkins

Primary Supervisor: Dr. Jon Elkins

Second Supervisor: Prof. Valentine Macaulay

Eligibility: Track 3 students are eligible to apply for this project.

Abstract

Various cancers are promoted by the binding of growth factors to receptor proteins, and are also associated with higher levels of the growth factors. One strategy to treat cancer is to block the binding of the growth factor to the receptor. This can be done by a drug that binds to the receptor or by a drug that binds to the growth factor itself, such as bevacizumab which is a monoclonal antibody that binds the growth factor VEGFA and is used to treat multiple types of cancer. Antibodies can be discovered that bind to growth factors, but they are expensive to produce and require intravenous delivery. Cyclic peptide or small molecule inhibitors of growth factors could offer advantages over antibodies by being cheaper, less likely to be immunogenic and given orally. Many cyclic peptides have already been approved as drugs [1]. This project aims to accelerate the discovery of cyclic peptide and small molecule binders of growth factors, by examining the interfaces of antibodies and cyclic peptides when bound to them. The cyclic peptides discovered during the project may also become lead candidates in a drug discovery programme. The project will combine the discovery of cyclic peptides, the discovery of nanobodies (small single-chain antibodies that are very suitable for crystallisation), and the structural comparison of these cyclic peptides and nanobodies when bound to growth factors.

By comparing structures, we aim to identify the features of nanobodies that give strong binding to the growth factor, and apply that knowledge to the design of improved cyclic peptides. After an initial focus on insulin-like growth factor 1 (IGF1), for which materials are already available, the knowledge and process can be applied to other growth factors such as EGF or VEGFA. The output will be, for each growth factor studied, a cyclic peptide inhibitor and an understanding of the structural features necessary for drug design.

Research objective

General methodology -Cyclic peptides (CPs) will be selected in the Kawamura lab from large libraries by mRNA-display / peptide microarray technology, and the top enriched hits that bind to IGF1 but not to insulin will be synthesised. An initial set of CP binders of IGF1 has already been generated as a proof-of-concept. Later in the project other target proteins can be used as bait in the peptide selection experiments.

The top hits from the screens will be validated for IGF1 binding by biophysical assays such as Biolayer Interferometry (BLI), Surface Plasmon Resonance (SPR) or Isothermal Titration Calorimetry (ITC). The peptides with the highest binding affinity will be used in co-crystallisation studies.

In parallel in the Centre for Medicines Discovery a nanobody selection by ribosome display can be performed analogously to the selection of CPs. Top enriched nanobodies will be validated as for the CPs and also used for crystallisation studies.

Computational analysis of the structures will guide the design of improved CPs in subsequent iterations. Among the factors to consider in the analysis will be potency of binding, selectivity (over insulin in the case of CPs targeting IGF1) and physicochemical properties such as solubility and predicted stability in plasma. *Knowledge of how to generate potent CPs against growth factors will be a big step forward for the drug discovery community, and this knowledge could potentially be applied to small molecules as well.*

The most potent CPs with nanomolar affinity can be tested for blocking IGF1 signalling in cancer cell assays in the Macaulay lab. It is anticipated that the best CPs will form the basis of a translational drug discovery project

Background to the choice of IGF1 as an initial target - Insulin-like growth factors-1 and 2 (IGF1/2) are small proteins that are similar in sequence to insulin and are part of a system of signaling that cells use to interact with their environment. IGF1/2 proteins are secreted into serum and high levels of IGF1 in serum are causally associated with risk of developing prostate, breast and colorectal cancer and with prostate cancer mortality [2–5]. IGF1/2 are also implicated in the association of tall height with cancer incidence and high-grade prostate cancer [6,7].

OXFORD CENTRE

The receptors for IGF1/2 are the IGF receptor (IGF1R) and insulin receptor (INSR-A). When the target cells are cancerous the effect of signals transmitted by the IGF receptor can be to promote tumour growth, invasion and resistance to cell death (apoptosis), which confers resistance to chemotherapy and radiotherapy [8]. Small molecule IGF1R inhibitors showed promise in the clinic but ultimately did not succeed as drugs, in some cases due to difficulty in inhibiting IGF1R without affecting the related INSR either directly, or indirectly via downregulation of IGF1R:INSR hybrid receptors, or because IGF1R inhibition caused hyperglycaemia [8].

An alternative strategy would be to target IGF1 or IGF2 directly, blocking (or neutralising) their interactions with the receptors. Boehringer Ingelheim have developed a monoclonal antibody, xentuzumab, that binds IGF1 and IGF2. Xentuzumab inhibits >90% of serum IGF bioactivity and has been tested in phase II clinical trials in breast and prostate cancer where it showed insufficient activity in unselected patients, although subgroups are potentially responsive [9]. A clinical trial in Oxford 'WINGMEN' (NCT05110495, Section 9) involving Macaulay may identify responsive subgroups. An orally-active drug is therefore urgently needed, in particular if WINGMEN results support trialing longer-term IGF blockade.

While a small-molecule IGF1 inhibitor would be ideal, IGF lacks a good binding site for a typical small molecule. Cyclic peptides possess the benefits of both antibodies and small molecules. CPs often show greater target affinity, bioactivity and biostability than their linear analogues, with advantageous properties over antibodies including synthetic tractability, low immunogenicity, cheaper production and potential for oral dosing, such as for cyclosporin. CPs can bind to their target with sub-nM affinity and >100-fold selectivity, even for challenging protein targets, including other growth factors such as HGF [10].

Team: The two supervisors on the project bring together expertise in structural biology and inhibitor discovery (Elkins) with expertise in cancer biology and IGF biology (Macaulay). This project is a collaboration with the lab of Prof. Akane Kawamura at Newcastle University, who is a world leading expert in cyclic peptide discovery by mRNA-display and peptide microarray technologies, and has a strong track record discovering cyclic peptide inhibitors of proteins of therapeutic interest.

Translational potential

The new cyclic peptides discovered may lead to clinical programmes, while the knowledge gained from analysis of binding motifs will accelerate the discovery of cyclic peptide based drugs.

Training opportunities

The student will experience a broad range of experimental science. In the Elkins lab the structural analysis of growth factor complexes will involve techniques such as molecular cloning, protein purification and crystallisation, X-ray structure determination and advanced biophysical measurements. In the Macaulay lab the various types of cellular assay necessary to evaluate the optimised cyclic peptides for their anti-cancer potential. The student will also have the opportunity to visit the Kawamura lab to learn about cyclic peptide discovery and synthesis. Overall, an education and training in structure-guided drug design in the cancer therapeutic area.

References

1 Zhang, H. and Chen, S. (2022) Cyclic peptide drugs approved in the last two decades (2001–2021). RSC Chem. Biol. 3, 18–31.

2 Guevara-Aguirre, J. et al. (2011) Growth Hormone Receptor Deficiency Is Associated with a Major Reduction in Pro-Aging Signaling, Cancer, and Diabetes in Humans. Sci. Transl. Med. 3, 70ra13.

3 Travis, R. C. et al. (2016) A Meta-analysis of Individual Participant Data Reveals an Association between Circulating Levels of IGF-I and Prostate Cancer Risk. Cancer Res. 76, 2288–2300.

4 Murphy, N. et al. (2020) Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ~430 000 women. Ann. Oncol. 31, 641–649.

5Watts, E. L et al. (2023) Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. Int. J. Epidemiol. 52, 71–86.

6Nunney, L. (2018) Size matters: height, cell number and a person's risk of cancer. Proc. R. Soc. B Biol. Sci. 285, 20181743.

7Perez-Cornago, A. et al. (2017) Tall height and obesity are associated with an increased risk of aggressive prostate cancer: results from the EPIC cohort study. BMC Med. 15, 115.

8Simpson, A. et al. (2017) Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target. Oncol. 12, 571–597.

9Schmid, P. et al. (2021) A phase Ib/II study of xentuzumab, an IGF-neutralising antibody, combined with exemestane and everolimus in hormone receptor-positive, HER2-negative locally advanced/metastatic breast cancer. Breast Cancer Res. 23, 8.10 Sakai, K. et al. (2019) Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor. Nat. Chem. Biol. 15, 598–606.

35. Assessment of Oesophageal cancer patient responses to immunotherapy via human tissue avatars.³ – Prof. Richard Owen

Primary Supervisor: Prof. Richard Owen **Second Supervisor:** Prof. Eric O'Neil

Eligibility: Track 3 students only are eligible to apply for this project.

Abstract

Currently, the majority of in vitro therapeutic testing is carried out using patient-derived cell lines, xenografts (PDX) and genetically engineered mouse models (GEMMs). While murine models provide valuable information about the systemic effects of therapeutics, GEMMs fail to capture the genomic heterogeneity of native tumours and PDX models are challenging to establish orthotopically and do not allow for the interaction of tumour with a functional immune system to be studied (Kim et al., 2009). Introduction of patient- derived organoids has allowed in vitro analysis of treatment interactions with three-dimensional tumour structures (Ooft et al., 2019) but, similarly to xenograft models, frequently fails to capture the complexity of the TME (Larsen et al., 2021). Recent efforts move in the direction of incorporating multiple different cell types and vascular mimics to reconstruct tumour complexities (Neal et al., 2018). Patient-derived tumour slices provide a platform through which tumour, stroma and immune infiltrate can be studied in their native architecture (Ghaderi et al., 2020; Kokkinos et al., 2021). Through this system therapeutics can be investigated for their impact throughout the tumour, allowing analysis of intra-patient variation in a clinically relevant timeframe.

O'Neill lab has developed the use of live patient-derived tumour slices for dissection of pancreatic cancer microenvironment and investigation of therapy responses. Methods have established to maintain superior cellular fitness and preservation of tumour microenvironment compared to standard cultures, organoids or spheroids. Analysis of transcriptomic changes induced by a combination of therapies aimed to target metabolic reprogramming treatment shows the potential of the platform to interrogate treatment responses across all cellular compartments of the microenvironment, in particular immune, in an unprecedented manner. Having demonstrated that organotypic tumour slices can maintain viability and provide novel insights enhancing both novel therapeutic discovery and precision medicine to improve current standard of care.

Oesophageal cancer is the sixth leading cause of cancer mortality worldwide (Bray et al., 2018). The predominant subtype in the western world, oesophageal adenocarcinoma, is among the cancer types with the highest increase in incidence over the past few decades (Devesa et al., 1998; Fitzgerald, 2004; Groulx et al., 2020; Lepage et al., 2008; Pennathur et al., 2013). About 40% of oesophageal cancers present with distant metastases at diagnosis (Smyth et al., 2017) and for these inoperable patients, median overall survival (OS) with conventional agents is less than one year (Cunningham et al., 2008; Dijksterhuis et al., 2019; Janmaat et al., 2017; Jatoi et al., 2006; Waddell et al., 2013). Treatment regimens using α PD-1 with chemotherapy have been approved and an Oxford-based trial (LUD2015-005) recently performed comprehensive clinical and molecular profiling throughout treatment using a combination of whole genome sequencing (WGS), single-cell RNA-sequencing (scRNA- seq), and bulk RNA-sequencing (bulk RNA-seq) to identify patients that benefit. Treatmentresponsive molecular signatures were identified that effectively predict response and resistance to first-line α PD-1 and also predicted long-term α PD-1 outcomes in other settings (Carroll et al. *in press*). Notably, high PD-L1 expression and tumour mutational burden composed indicators to establish pre-treatment biomarkers that could improve prediction of long-term outcomes of α PD-1 treatment.

Research objective

This project is aimed to develop live tissue patient avatars from oesophageal adenocarcinoma biopsies using the technology validated for immune monitoring of pancreatic cancer avatars in the O'Neill lab. We aim to use engineer this approach to screen for patients susceptible to α PD-1 therapy and a platform to assess further immune-therapies as potential combinations for patients not served by the pre-treatment biomarkers I have found (Carroll et al. *in press*).

36. Spatial interrogation of low grade prostate cancer to identify genomic events responsible for driving indolent not aggressive disease^{,3,4} – Dr. Alastair Lamb

Primary Supervisor: Dr Alastair Lamb Second Supervisor: Prof. Ian Mills Eligibility: Tracks 3 & 4 eligible to apply for this project

Abstract

Background: Over the past decade we have increasingly accepted that prostate cancer classified as "low risk" (Gleason Grade Group 1 (Gleason Score 3+3 = 6), PSA <10, Stage T1-T2a) are indolent and do not progress.¹ This has led to a recommendation for most men with this type of prostate cancer to undergo active surveillance.²³ Indeed, opinion leaders in prostate cancer are increasingly calling for Grade Group 1 prostate cancer to cease being called "carcinoma".⁴⁵ However, we know little about the genetic composition of such low grade tumours, largely because research has focussed on higher grade disease, but also because we have lacked the spatial genomic technologies to carefully interrogate discrete selected areas of prostate tissue. Those technologies are now available⁶⁷ and have been developed to a point where the clonal copy number composition of epithelial regions can be defined,⁷⁸ although they still lack spatial epigenomic analyses.

In our organscale study of a prostate removed at radical prostatectomy which had multifocal prostate cancer, we identified an area of Gleason Grade Group 1 prostate cancer which lacked most of the defining somatic mutations of higher grade disease (e.g. chr8q gain corresponding to well-known prostate cancer oncogene c-Myc⁹, or chr10p loss corresponding to tumour suppressor gene PTEN¹⁰; **Figure 1**). This raises the possibility that low grade cancer is fundamentally distinct from higher grade disease at a genetic level. We also found that areas of non-transformed 'benign' epithelia contained areas of greater genomic risk than low grade cancer. Perhaps low grade cancer is therefore 'safer' than benign epithelia which still retains the potential to undergo somatic mutations that develop aggressive disease.

Questions: Why do low grade Gleason pattern 3 prostate cancers seem not to progress? How can we better differentiate "good" from "bad" pattern 4 disease? Can we drive "bad" pattern 4 disease to indolence?

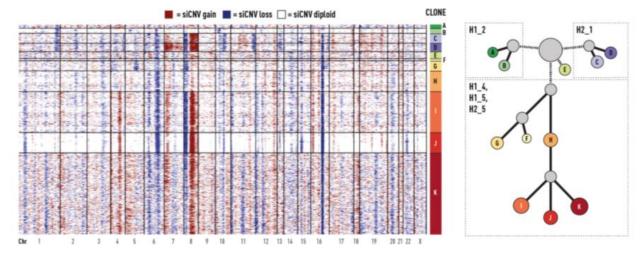
Hypothesis: Low grade prostate cancer clones harbour genomic alterations which pre-determine indolence; when present in higher grade clones, such alterations differentiate high grade disease with good prognosis.

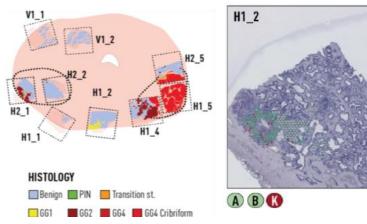
Research objectives

- <u>Consolidate</u>: To undertake clonal siCNV analysis⁷ on a selection of men with pure Gleason pattern 3 prostate cancer (n=5; from archive as we no longer operate on these men) extending the findings of our recent paper in Nature, Erickson et al⁷, to identify "indolence factors" when benchmarked against pattern 4 & 5 [tissue handling; spatial transcriptomics; bioinformatics]
- Extend: To track clonal composition of Gleason pattern 3 and 4 cancer in serially sampled MRI-targeted biopsies from men on active surveillance for "low" and "intermediate risk" prostate cancer (n=5 each) [spatial transcriptomics; DNA sequencing; epigenomics; bioinformatics]
- 3. <u>Establish phenotype</u>: To genetically modify cell-line models of aggressive PCa (e.g. PC3, DUCaP) to upregulate indolence factors as a pre-clinical basis for pharmacological manipulation [cell culture; cloning; lentiviral transduction; functional assays]

Translational potential

The data produced could provide the evidence our field is looking for to underpin a redefining of low grade prostate cancer, as well as helping us understand what makes some pattern 4 prostate cancers so much worse than others. This could help a proportion of men who currently undergo radical therapy (currently approx. 25,000 pa in UK) to avoid the side-effects of such treatment.





Training opportunities

The project incorporates a range of wet and dry lab techniques (see [] brackets above) and can be tailored, given our overall lab skill sets, to someone with an interest in biology or computational work. We will also train the individual, whatever their background, in our overall approach to translational surgical science with opportunities to work with surgical oncologists, pathologists and radiologists as well as biologists and data scientists. https://www.nds.ox.ac.uk/research/prostate-biology

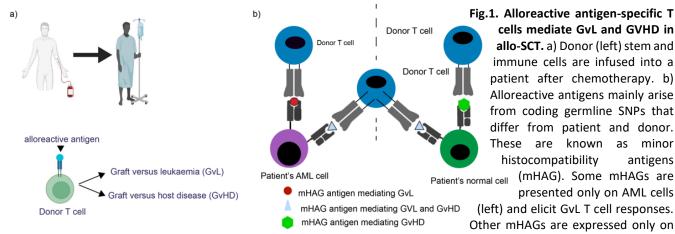
Figure 1. Organscale prostate siCNV analysis (from Erickson et al⁷). Green clones A&B (top of heatmap) from GG1 region in section H1_2 lack key mutations e.g. on Chr 8, 10 & 16. However Chr1q loss, present in GG1 clones A&B is also shared in certain GG2 clones (C&D)

References:

- 1. Ross HM, Kryvenko ON, Cowan JE, et al. Do adenocarcinomas of the prostate with Gleason score (GS) </=6 have the potential to metastasize to lymph nodes? *Am J Surg Pathol* 2012;36(9):1346-52. doi: 10.1097/PAS.0b013e3182556dcd [published Online First: 2012/04/26]
- 2. Eastham JA, GBA, DAB, et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging and Risk-Based Management. J Urol 2022 doi: doi.org/10.1097/JU.00000000002757
- 3. Lowrance WT, Breau RH, Chou R, et al. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline PART I. J Urol 2021;205(1):14-21. doi: 10.1097/JU.000000000001375 [published Online First: 2020/09/23]
- 4. Chappidi MR, Bell A, Cowan JE, et al. The Natural History of Untreated Biopsy Grade Group Progression and Delayed Definitive Treatment for Men on Active Surveillance for Early-Stage Prostate Cancer. J Urol 2022;207(5):1001-09. doi: 10.1097/JU.00000000002420 [published Online First: 2022/01/05]
- 5. Labbate CV, Paner GP, Eggener SE. Should Grade Group 1 (GG1) be called cancer? *World J Urol* 2022;40(1):15-19. doi: 10.1007/s00345-020-03583-4 [published Online First: 2021/01/13]
- 6. Stahl PL, Salmen F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science* 2016;353(6294):78-82. doi: 10.1126/science.aaf2403
- 7. Andrew Erickson EB, Mengxiao He et al, Alastair D Lamb, Joakim Lundeberg. Spatially resolved clonal copy number alterations in benign and malignant tissue. <u>Nature</u> volume 608, pages 360–367 (2022) 2022 [https://www.nature.com/articles/s41586-022-05023-2]
- 8. Erickson A. Spatial iCNV 2021 [Available from: https://github.com/aerickso/SpatialInferCNV.
- 9. Ramos-Montoya A, Lamb AD, Russell R, et al. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network. *EMBO molecular medicine* 2014;6(5):651-61. doi: 10.1002/emmm.201303581
- 10. Jurmeister S, Ramos-Montoya A, Sandi C, et al. Identification of potential therapeutic targets in prostate cancer through a cross-species approach. *EMBO molecular medicine* 2018;10(3) doi: 10.15252/emmm.201708274 [published Online First: 2018/02/14]

37. New Immune Therapies for Acute Myeloid Leukaemia (AML) And Myeloid Blood Cancers ^{3,4} – Prof. Paresh Vyas

Primary Supervisor: Prof. Paresh Vyas

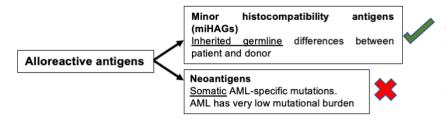

Second Supervisor: Dr, Ricardo Fernandes, Prof. Omer Dushek and Professor Gillespie. **Eligibility:** Tracks 3 & 4 eligible to apply for this project

Abstract

Immunotherapy is transforming cancer outcomes. This project focuses on developing a mechanistic understanding for developing new T cell receptor (TCR) based treatments for AML, the most common aggressive adult blood cancer. We have identified peptides bound to HLA class II and T cell receptors that recognise these peptides by studying AML patients cured by allogeneic stem cell transplantation. Though many groups are working on developing HLA-I restricted therapies, very little is known about how to harness HLA-II therapies in cancer. To address this important knowledge gap, the project will study the mechanisms that govern binding of peptide to HLA-II and the binding of TCR to peptide-HLA-II (pHLA) antigen. This is a pre-requisite to developing effective HLA-II directed TCR-based therapies. The applicant will work in a multi-disciplinary group of immunologists, AML clinical academics and structural biologists to transform immune therapy for AML and related myeloid cancers. There are three discrete packages of work. First, experimental and computational approaches will be employed to study HLA-II peptide binding. Second, experimental approaches will study the binding and crossreactivity of TCRs to pHLA-II antigens. Finally, the applicant will collaborate with a structural biology group to study the structural basis of p-HLA-II-TCR binding.

Research objectives

Background: Over the last few years, we have been working to understand the mechanistic basis of cure mediated by the most established curative cellular immunotherapy, allogeneic stem and immune cell transplantation (allo-SCT). Allo-SCT involves transfer of blood stem and immune cells from a healthy person (donor) to a patient (recipient) (Fig. 1a). Allo-SCT has been in routine clinical practice since the 1960s and around 20,000 allo-SCTs are performed worldwide annually. The most common disease treated by allo-SCT is AML. Allo-SCT is curative because some of the donor immune cells, called T cells, attack and eradicate the patient's cancer cells. This is called Graft-versus-Leukaemia (GvL). However, donor immune cells can also attack the patient's normal healthy tissue, which can cause great harm. This is known as Graft-versus-Host Disease (GvHD) (Fig 1b).


normal tissue and elicit GvHD (right). Finally, some mHAGs are expressed on both AML and normal cells and elicit both GvL and GvHD

Remarkably, until our recent work, the field has limited insight into the antigenic specificity of GvL, or how to distinguish T cells that cause beneficial GvL from those that cause harmful GvHD. To address this knowledge deficit, we used an unbiased systematic reverse immunology approach to study elite responders who had been cured by allo-SCT, with minimal GvHD. We identified 22 peptide antigens targeted by alloreactive T cells due to single amino acid differences

between patient and donor encoded by **germline** single nucleotide polymorphisms (SNPs) that differed between patient and donor, rather than somatic mutations in the patient's tumour (Fig. 2).

Fig. 2. Alloreactive antigens. In principle these could be either mHAGs (due to coding germline SNPs) or neoantigens (due to somatic AML-specific mutations. Our data shows the antigens identified were mHAGs consistent with the low mutational burden in AML.

1. Characterisation of HLA-II binding to alloreactive peptide Using molecular biology and protein engineering methods the applicant will express soluble pHLA-II with varying peptide lengths and study the biophysical properties of peptide-HLA-II binding and compare this to computationally derived prediction of peptide-HLA-II binding. By mutating peptide resides the applicant can identify which peptide residues are critical for binding. This work will be combined with structural studies in Aim 3.

2. Characterisation of TCR binding and crossreactivity to pHLA-II antigen. Using molecular biology and protein engineering methods the applicant will express soluble TCR and test the biophysical properties of binding to pHLA-II to TCR. By mutating TCR resides the applicant can identify which TCR residues are critical for binding. If time permits, the applicant will generate a large, unbiased, peptide-MHC library for yeast display to determine the TCR crossreactivity of wild-type and engineered TCRs. Finally, for select TCRs that bind pHLA-II the mode of T cell activation and need for co-stimulation will be studied. This work will be combined with structural studies in Aim 3.

3. *Structural studies of TCR-PHLA-II binding* The data in Aims 2 and 3 will be greatly strengthened by structural studies of pHLA-TCR interaction. The applicant will take select soluble p-HLA-II antigens and cognate TCRs from aims 2 and 3 collaborate with a structural biology group to enable them to make crystals for structural studies using a range of structural resolution methods.

The combination of Aims 1-3 will provide detailed insight into the mechanisms of p-HLA-II binding and the binding of pHLA-II antigens with TCRs.

Translational potential

This project aims to identify the optimal pHLA antigens and TCRs for either TCR engager therapy or TCR T-cell therapies for AML and myeloid cancers.

Training opportunities

The DPhil student will be trained in: (i) fundamental aspects of immunology and specifically pHLA interactions and the binding of pHLA to TCR; (2) molecular biology, protein engineering and biophysical measurements of protein-protein interaction: (3) computational biology (4) structural biology. The training will be focussed on specific skill sets that are critical for developing immune therapies.

References:

s1. Polonen, P., et al., Cancer Res, 2019. 79(10): p. 2466-2479. 2. Christopher, M.J., et al., N Engl J Med, 2018. 379(24): p. 2330-2341. 3. Toffalori, C., et al. Nat Med, 2019. 25(4): p. 603-611. 4. Hernandez-Malmierca, P., et al.Cell Stem Cell, 2022. 29(5): p. 760-775 e10.

38. Elucidating the role of trans-lesion synthesis DNA polymerases in mutational processes and therapy resistance^{,3,4} - Marketa Tomkova

Primary Supervisor: Marketa Tomkova

Second Supervisor: Prof. Ian Tomlinson Eligibility: Tracks 3 & 4 eligible to apply for this project

Abstract

Trans-lesion synthesis polymerases (TLS) enable cells to replicate damaged DNA that would otherwise lead to replication fork collapse and cell death. However, TLS polymerases are inherently error-prone and introduce new mutations into the DNA, potentially contributing to the development of cancer. Understanding the sources and mechanisms of cancer-causing mutagenesis is critical for identifying effective preventive strategies, predicting personalised response to therapy, and designing novel therapeutics. One of the open questions in cancer mutagenesis is what proportion of the cancer-causing mutations are due to errors made by DNA polymerases during DNA replication.^{1,2} The aim of this project is to elucidate the role of the error-prone TLS polymerases in mutational processes, using computational genomics combined with wet-lab approaches. Second, we aim to develop computational tools predictive of response to therapy, as TLS polymerases contribute to resistance to chemotherapy by bypassing replication-blocking lesions induced by chemotherapy such as cisplatin^{3–5}.

Research objective

Aim 1: Computational genomics approach to identify mutational signatures of TLS polymerases

Carcinogens and mutagenic processes leave distinct footprints in DNA, detectable using the computational approach of *mutational signatures*⁶. Remarkably, aetiology of nearly one-third of the mutational signatures in cancer patients is unknown, and there are open questions about the exact molecular mechanisms in many of the described mutational signatures.⁷ Understanding these mechanisms is important for prevention (e.g., to know how we can change our lifestyle to avoid cancer), predicting risk and personalised therapy (e.g., using the signatures as biomarkers), and designing novel therapeutics (e.g., based on synthetic lethality).

The first aim of this project is to identify the contribution of TLS polymerases to the previously detected mutational signatures and to develop refined TLS signatures using novel computational approaches by utilising additional genomic features and other data (including TLS gene expression, locations of regions where TLS polymerases get recruited, and specialised datasets of samples deficient in one TLS polymerase and compensated by other TLS polymerases). Candidate mutational signatures of TLS polymerases will be identified, comparing traditional ways of de novo signature extraction, with novel approaches, such as deep-learning-based methods.

Aim 2: Direct in vitro and in vivo measurement of error-signatures of TLS polymerases

One of the challenges in studying DNA polymerase errors is that they are very hard to measure. We have recently developed a specialised technique called Polymerase Error Sequencing (PER-seq) to detect the errors made by DNA polymerases in single molecules *in vitro* (cell-free) in unprecedented detail. Here, we will apply PER-seq to selected TLS polymerases to obtain direct measurements of their error signatures, unobscured by DNA repair or other complex cellular processes. We will then complement this with sequencing of TLS-mutant/overexpression mouse and/or cellular models (Tomlinson lab) and analysis of sequencing data from other previously published resources.

Aim 3: Prediction of resistance to therapy due to TLS polymerases

Finally, we will evaluate the potential of these signatures to predict survival and resistance/response to treatment using data from cell-lines⁹, recently cleaned and curated TCGA Resource¹⁰, Genomics England, Hartwig Medical Foundation, ICGC and focussed datasets such as the SCOT clinical trial, and GDSC. Selected candidate predictions may be validated experimentally.

The expected outcomes of this project include (a) mutational signatures of TLS polymerases with support in human cancer data, *in vitro*, and *in vivo* models, (b) novel computational methods for signature detection, (c) mechanistic understanding of TLS role in mutagenesis, and (d) biomarkers of TLS-based therapy resistance.

Translational potential

TLS polymerases enable bypass of chemotherapy-induced DNA damage, leading to therapy resistance. TLS polymerases thus represent an attractive target for sensitizing cancer cells to genotoxic therapies. Indeed, inhibitors of TLS or their protein-protein interactions show promising synergy with therapies such as cisplatin, temozolomide, PARP inhibitors, and others ^{3–5,11,12}. It is

thus of increasing importance to understand the mechanisms and extent of TLS contribution to chemoresistance and to develop biomarkers of resistance due to TLS polymerases. The signatures of individual TLS polymerases will elucidate which TLS polymerases are involved in resistance to different therapies, and will help to predict which patients would benefit from TLS inhibitor-based treatment. Finally, the aims 1 and 2 are also expected to elucidate the mutagenic role of TLS polymerases in genesis of different cancer types, with potential implications for cancer prevention.

Training opportunities

The student will have the opportunity to learn transferable skills, including big data analysis, data visualization, machine learning and potentially deep learning, statistics, high-throughput computing, bioinformatics, and computational genomics, including integration of large sequencing genomic, epigenomic, transcriptomic, and other data set. The interdisciplinary nature of the project will provide opportunity to also gain laboratory skills in a range of molecular biology techniques, PER-seq, and other methods. Support will be provided to develop soft skills in presenting, writing, critical thinking, experimental design, and networking within the Oxford scientific community and at conferences.

References:

1. Tomasetti & Vogelstein. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

2. Abascal et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

3. Taniguchi. REV1-POL ζ Inhibition and Cancer Therapy. Mol Cell vol. 75 419–420 (2019).

4. Wilson, Duncton, Chang, Lee Luo, Georgiadis, Pellicena, Deacon, Gao & Das. Early Drug Discovery and Development of Novel Cancer Therapeutics Targeting DNA Polymerase Eta (POLH). Front Oncol 11, 4776 (2021).

5. Yamanaka, Chatterjee, Hemann & Walker. Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy? PLoS Genet 13, e1006842 (2017).

6. Alexandrov et al. Signatures of mutational processes in human cancer. Nature 500, 415–21 (2013).

7. Hu, Xu & De. Characteristics of mutational signatures of unknown etiology. NAR Cancer 2, (2020).

8. Davies et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med 23, 517–525 (2017).

9. Petljak et al. Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell 176, 1282-1294.e20 (2019).

10. Liu et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173, 400-416.e11 (2018).

11. Wojtaszek et al. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Cell 178, 152-159.e11 (2019).

12. Ler & Carty. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Front Oncol vol. 11 (2022).
13. Vaziri, Rogozin, Gu, Wu & Day. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021 1–17 (2021).

39. Multi-cancer detection testing in clinical practice. ^{3,4} - Dr. Brian Nicholson

Primary Supervisor: Dr. Brian Nicholson Second Supervisor:

Eligibility: All tracks are eligible to apply for this project.

Abstract of the project

Non-invasive MCED tests presents a new opportunity to improve early cancer detection by optimising patient selection for targeted cancer testing. Whilst MCED technologies are designed to detect a cancer signal across multiple cancer sites, their performance varies by cancer site and cancer stage. These technologies will not be used in isolation by clinicians in primary or secondary care: they will be used in people with a prior risk of cancer based on their risk factors (most importantly age), symptoms, signs, and test results, who are referred into clinical pathways for definitive testing. Care will be needed to select at-risk populations that complement the performance characteristics of the test to balance the likelihood of missed cancers and unnecessary referrals for invasive or expensive investigation. With a rapidly increasing number of MCED technologies in development, their performance characteristics are likely to improve. However, understanding the performance characteristics of MCED technologies alone will not be sufficient to guarantee the success of their implementation. Many promising innovations fail to reach clinical adoption as little attention has been given to the drivers of uptake in clinical practice. Successful clinical implementation of MCEDs in clinical practice uptake. The successful candidate would join an exciting multidisciplinary programme of work investigating the accuracy, utility, and implementation of MCED testing in NHS clinical practice.

Research objectives

There is scope for the successful candidate to develop research objectives within the broad framework of the MCED focussed CRUK Oxford Cancer Centre's Early Detection theme. The Early Detection theme focusses on patient selection for MCED testing, MCED test development, and MCED test evaluation in clinical practice. The successful candidate will be supported to develop and lead research into MCED testing using methods that suit their intended career path. Examples of areas for development could be to:

- compare the performance of existing risk algorithms and clinical guidance to identify populations most at risk
 of cancers (combined and individually) who could be offered MCED testing by using existing health records
 data or by developing studies to collect new cohort data. These multi-parametric algorithms could take
 patterns of a patient's symptoms, signs, test results, consultation patterns, medical history and risk factors to
 calculate their individual risk of cancer diagnosis to be updated as MCED tests are completed.
- Utilise the Rapid Diagnostic Centre Digital Research Platform (RDC-DRP) curated to include clinical, research, and biobank data derived from the expanded Suspected CANcer (SCAN) pathway and biobank. The RDC-DRP could support fundamental and basic science researchers seeking to study early-stage disease and enhance risk factor and symptom data capture, clinical epidemiologists interested in the MCED signatures in patients with non-specific symptoms, and health services researchers hoping to use an online secure patient survey portal to collect patient data prior to and following their appointment.
- develop community-based prospective MCED cohorts and trials engaging patients across to promote diversity and inclusivity with the team who delivered the SYMPLIFY study. Together with a focus on assessing the accuracy and placement of MCED technologies within NHS clinical workflow key implementation questions could be asked using qualitative methodologies to understand the public, patient, clinician and system-level factors that influence MCED uptake and impact.

oxford

CENTRE

Translational potential of the project

In order for the NHS to maximise the benefit of MCEDs for patients in clinical practice research is required to understand how MCEDs complement existing diagnostic pathways, if they replace commonly used diagnostic tests, and how patients and practitioners will use them. As MCEDs develop, with improved or different analytical performance, the candidate's research findings will be required to understand where to best place MCED in the diagnostic pathway. Oxford is uniquely placed to investigate MCED technologies as the supervisory team are involved in the development of MCED technologies and NHS evaluations of MCEDs in clinical practice.

Training opportunities

In addition to the training provided by the Cancer Science DPhil programme, NDPCHS offers broad methodological expertise in applied health services research and evidence-based health care with training available to support the approach chosen by the candidate under guidance from their supervisory team. For example, the Medical Statistics group specialises in quantitative diagnostic, prognostic, monitoring, and prediction methodologies, the Medical Sociology and Health Experiences Research Group specialises in social science informed, qualitative and mixed methods implementation studies of health and illness, and the Primary Care Clinical Trials Unit delivers world class clinical trials in the community. In addition, the Oxford-led NIHR Community Healthcare MedTech and In vitro Diagnostics Co-operative (CH-MIC) works upstream and downstream of the CE-marking process to both influence the development of novel technologies and the evaluation of clinic-ready products.

40. Understanding STING regulation in cancer and the crucial role of ubiquitination in the ER – ³ Prof. John Christianson

Primary Supervisor: Prof. John Christianson Second Supervisor: Assoc Prof. Eileen Parkes Eligibility: Track 3 students are eligible to apply for this project

Abstract

Cancers interact with their surrounding environment (the tumour microenvironment) by remodelling it to contain cells promoting tumour invasion and spread, and resistance to anti-cancer therapies. Innate immune pathways, typically used to defend cells from infection by viral and bacterial pathogens, are hijacked in cancer. The mechanisms by which cancer cells modify innate immunity are currently not well understood. A key pathway is the cGAS-STING pathway – the cytoplasmic sensor cGAS recognises non-self or mislocalised DNA and activates STING (the STimulator of Interferon Genes). STING is embedded in the endoplasmic reticulum (ER) – activation of the STING-mediated interferon response requires oligomerisation and efflux from the ER (1). Fine tuning of this response is paramount, and ubiquitination of STING has emerged as an important post-translational modification capable of modulating these signalling events. Importantly, evidence is emerging of important interferon-independent effects of cGAS-STING signalling which may drive tumour progression. Establishing how ubiquitination and its conjugating machinery impact the cGAS-STING pathway is key to understanding how cancers subvert this pathway to their own ends.

This DPhil project will biochemically and functionally characterise ER-resident ubiquitination machinery that modulates STING signalling in order to delineate its regulation of the interferon response.

Research Objectives and Outcomes

Recently, our lab identified a multi-subunit complex organised around ER-resident ubiquitin ligase (E3) RNF26, whose constituents modulate signalling through STING to scale the magnitude of the interferon response (2). We are now investigating how each component of this RNF26 complex impacts STING to contribute to the response, focusing on defining protein-protein interactions, key functional domains, ubiquitin linkages, complex assembly, and its synergy (or competition) with other ubiquitin ligases. This is crucial as understanding STING regulation will identify mechanisms of resistance to immune targeting agents (immune checkpoint blockade and STING agonists) in advanced cancers.

Objective (1): Molecular dissection of ubiquitin conjugating machinery competing to modify STING in the ER. Genomic editing, gene silencing and dominant negatives will establish the individual and combinatorial contributions of ER-resident E3s (RNF26, RNF5, gp78, Hrd1) to STING properties including its; stability/degradation, ubiquitination profile, oligomerisation, trafficking, and activation of the downstream interferon response, in model cell lines. The diversity and dynamic nature of ubiquitin chain linkages modifying STING will then be explored using both mass spectrometry and sensitivity to linkage-specific deubiquitinases.

Outcome: Establishment of key ubiquitination events governing STING in the ER and consequently the magnitude of its downstream signalling cascade.

Objective (2): Defining how cofactors contribute to ER-E3 recognition and/or ubiquitination of STING. Potentially important regulatory domains of E3 complex components identified bioinformatically will be evaluated functionally using truncations and site-directed mutagenesis. This will be complemented by proximity-labeling strategies coupled with proteomics to define the spatiotemporal organisation of E3 complexes and their interaction/s with STING. STING agonists and antagonists (currently being developed for clinical applications) will be used to pharmacologically probe for changes in E3-STING interaction.

Outcome: An understanding of the how ubiquitin multifaceted regulation of STING at the ER influences response to activating treatments.

Objective (3): Preclinical validation of STING modulating factors. Identified STING regulating factors will be modified using gene editing and CRISPR-cas9 approaches using an *ex vivo* platform (i.e. culturing cells from patient samples). These samples will be used to generate organoids with/without fibroblasts and patient-matched immune cells. This near-patient system will be used to determine the effect of modulation of STING regulating factors on the tumour microenvironment. Using this platform, immunotherapeutic stimulants can be added to determine the role of STING-modulating E3s and co-factors in response to existing immunomodulating treatment will be investigated. Flow cytometry and T cell activity assays will be employed to measure the impact of novel targets on immune response in this near-patient model.

Outcome: Characterisation of targetable mechanisms of STING suppression determining response to cancer immunotherapy.

Collectively this research will develop insights into the fundamental cellular controls of immune signalling. Along with ongoing work in the lab, it will form part of our broad effort to explore and define ubiquitination events and mechanisms at the ER responsible for essential cellular homeostatic functions

Translational relevance of the project

This project will address important fundamental and clinical questions relevant to personalising immunotherapy treatment in cancer. Tailoring immune targeting approaches and understanding resistance mechanisms (such as STING repression) has potential to improving clinical responses. In this study novel STING regulating mechanisms will be characterised as potential biomarkers and/or targets for further clinical study. Moreover, this proposal uses patient samples for 3D modelling, further supporting translation of this work to the clinical setting.

Training Opportunities

There will be multiple training opportunities available during the project including; advanced cell biology and biochemistry, proteomic sample preparation and analysis, flow cytometry, and 2D and 3D cell culture modelling. There will also be opportunities to present findings at local, national and international conferences.

References

- 1. Hopfner K and Hornung V (2020) Molecular mechanisms and cellular functions of cGAS–STING signalling. *Nature Reviews Molecular Cell Biology*. 197: 1-21 (LINK)
- Fenech EJ, Lari F, Charles PD, Fischer R, Thezenas ML, Bagola K, Paton AW, Paton JC, Gyrd-Hansen M, Kessler BM, Christianson JC (2020) Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signaling. *eLife* 2020;9:e57306 DOI: 10.7554/eLife.573 (<u>LINK</u>)
- 3. Parkes EE, Walker SM, Taggart LE, et al. Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer. *J Natl Cancer Inst*. 2017;109(1). doi:10.1093/jnci/djw199.

41. Data Driven approaches for addressing inequalities in Cancer Outcomes - ^{3,4} Prof Eva Morris

Primary Supervisor: Prof. Eva Morris Second Supervisor: Prof. Sasha Shepperd and Dr Ben Lacey Eligibility: Tracks 3 & 4 eligible to apply for this project

Abstract

There is growing concern that there is significant variation in the quality of cancer care and outcomes across the UK.¹ Although the NHS seeks to ensure that everyone receives the best treatment available and attains the best outcomes possible, significant variation between patient groups persists. The first steps to tackling such inequities are quantifying their size, investigating why they arise and understanding what impact they have on patient outcomes.² Data are key to enabling this but, at present, there is a lack of available information to fully explore, and hence understand, cancer inequalities and so generate evidence to tackle them.

For some social groups there are good data to categorise people and quantify differences in outcomes but less information about what is driving those differences.³ For example, it is possible to group people into age categories and demonstrate differences in care and outcomes, but understanding whether these differences are driven by associated factors such as levels of frailty or comorbidity, or indicative of true inequities, is challenging. In contrast, for other potentially excluded groups there is extremely limited information to even identify members, let alone investigate patterns and outcomes of care. For example, identifying individuals in the LBGTQ+ community, or even ethnicity, in routine administrative data used to investigate epidemiological trends is extremely challenging.

This project will investigate the administrative data available to quantify cancer-related inequalities in the UK, as well as to use these data to understand what drives them and generate the evidence needed to tackle any inequities found.

Research objectives and proposed outcomes

The project's research objectives are:

- 1. Systematically review the existing evidence base on cancer inequalities and map the data available to investigate them
- 2. Use the evidence gathered to identify and fulfil novel opportunities to quantify inequalities and undertake such studies. For example, using the cancer patient experience survey to investigate issues relevant to the LGBTQ+
- 3. Use the evidence gathered to identify and fulfil novel opportunities to better distinguish between unavoidable inequalities and true inequities, and understand what is driving any variation seen. For example, investigate to what extent lower treatment rates in older people are a result of age-discrimination, or ineligibility for treatment due to concomitant disease or frailty.

Translational potential of the project.

The translation potential of the project is substantial as there is good evidence of substantial variation in cancer care across the UK, and the outcomes obtained lag behind many of our economic neighbours with similar health systems. Eliminating cancer inequalities is a priority for cancer charities and the National Health Service but there is limited evidence to inform interventions. This study will help provide the information required.

Summarise the training opportunities

The student will work within the rich academic environment of the Nuffield Department of Population Health and affiliated institutions, gaining research experience and skills training in epidemiology and health data science. Training will also include information governance and research ethics, and patient/public engagement to ensure appropriate and effective use patient level administrative data. Translational/implementation skills will also be developed to help enable research findings to inform cancer policy to improve health outcomes. Candidates will receive professional mentorship through regular supervisory meetings, and acquire research skills by attending seminars and workshops. Candidates will

work closely with other team members, and will have the opportunity to communicate their findings in international conferences and with the public.

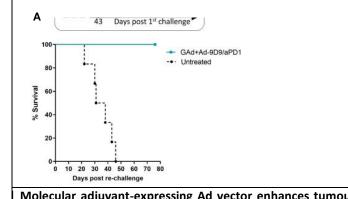
References

1. Martins T, Abel G, Ukoumunne OC, et al. Ethnic inequalities in routes to diagnosis of cancer: a population-based UK cohort study. *Br J Cancer* 127(5): 863-71, 2022

2. S. Vaccarella *et al.*, 'Reducing Social Inequalities in Cancer: Setting Priorities for Research', *CA Cancer J Clin*, vol. 68, no. 5, pp. 324–326, Sep. 2018

3. M. Marmot, S. Friel, R. Bell, T. A. J. Houweling, and S. Taylor, 'Closing the gap in a generation: health equity through action on the social determinants of health', *The Lancet*, vol. 372, no. 9650, pp. 1661–1669, 2008

42. Molecular enhancement of vaccine-induced immune responses for cancer therapy - ³ Prof. Paul Klenerman


Primary Supervisor: Prof. Paul Klenerman Second Supervisor: Nicholas Provine Eligibility: Track 3 are eligible to apply for this project

Abstract

The role of immune responses in cancer therapy has been highlighted in recent years by the success checkpoint inhibitor therapy. However, not all cancers respond to such therapies and other methods to initiate or boost anti-cancer responses are being explored. This includes the development of new cancer vaccines. Leading molecular platforms for such vaccines – as for infectious diseases - are mRNA and Adenovirus approaches. By introducing relevant target antigens into these vectors, it is possible to generate T and also B cell responses to tumours. However, the efficacy of such approaches currently is very variable. To be most effective in a cancer setting, the strongest possible immune response must be first induced and then boosted and sustained: the molecular rules which govern these processes for Adenoviral vectors and mRNA are not yet known, particularly the latter. There are a number of factors which can influence this – in particular the local cell-cell signals which occur at the interface of an antigen presenting cell (such as a dendritic cell) and a T cell, which can be through surface proteins and secreted cytokines at the immunologic "synapse".

In this project we are partnering with our colleagues at the University of Naples, led by Alfredo Nicosia, who was instrumental in the development of simian adenoviral vectors as used in Covid-19. The team have systematically developed a set of vectors which can be co-delivered with mRNA and/or Adenoviral vaccines to enhance their immunogenicity and hence their efficacy. These vectors include a range of surface proteins, soluble triggers and soluble blocking molecules which can influence the priming environment of the T and B cells and impact of immune memory. We aim to explore the functional impact of these new molecular "adjuvants" in vivo following vaccination, using functional assays, spatial and genomic approaches to define the quality of immune memory induced. By careful analysis of the impact of a range of such new tools we will help both select the optimal approach for each platform, and also understand much better the rules which govern different types of immune priming – thus applicable across many platforms.

This project overall represents an exciting opportunity to work in a highly translational project which will not only develop new therapeutic tools for cancer but also use novel techniques to address fundamental questions about vaccines and immunology.

Molecular adjuvant-expressing Ad vector enhances tumour control. Ad-9D9 is a MA-expressing vector that enhances control of CT26 tumor growth in vivo in mice when combined with a cancer vaccine expressing T cell epitopes (GAd). **D'Alise** ... **Nicosia**, *Front Immunol*, 2023

Research objectives and proposed outcomes

In this programme of work, a series of mRNA and Adenoviral constructs (molecular adjuvants, MAs) are currently being developed by our collaborators and screened for their ability to enhance T cell responses in vivo following vaccination with an established cancer vaccine. The impact of the MAs is being tested for their ability to boost immunogenicity using

ex vivo T cell assays, and to provide in vivo protection using a standardised challenge with the MC38 tumour cell line. We have already had experience in our lab with an early product of this pipeline. Tools to assess the immunogenicity include FACS staining using MHC-peptide tetramer tools to evaluate individual tumour-specific responses, a range of functional assays to assess cytokine release and killing by such T cells, single cell RNAseq approaches to evaluate the underlying regulation of these cells and their T cell receptor usage and multicolour staining and spatial transcriptomic approaches to understand the local niche where priming and boosting occurs. These are essential tools in modern molecular immunology. We will also assess a second model developed in the lab for SARS-CoV-2, which includes evaluation of B cell responses in molecular detail. We aim to assess not only the impact on the antigen-specific cells, but also on the cells in the priming microenvironment, and address the question as to where and how the antigen is presented and what the additional impact of each MA is. The effects will differ between mRNA and adenoviral vectors and between boost and prime, adding further depth to the project. There will be the opportunity to test a series of hypotheses related to the specific action of each co-stimulatory and co-inhibitory pathway.

The project is an important new collaboration between the University of Oxford and University of Naples – we have already had one visit from a PhD student from Naples so we are sure this connection is good and the MA pipeline is flowing already. It also represents a collaboration between the newly established Provine lab, with a focus on vaccine immunobiology, and the Klenerman lab, with a focus on T cell function.

Translational potential of the project.

New cancer vaccines based on mRNA or adenoviral vectors are already under development. These tools will strongly enhance such approaches, including the development of strong cytotoxicity and the maintenance of immunity in the face of exhaustion within tumours. Our labs have a track record of moving such constructs into human trials, collaborating on the first studies brining a range of new adenoviral vectors to the clinic and establishing the mechanisms of immunogenicity. These approaches can be applied to a range of targets, especially cancers of the GI tract, which are generally less susceptible to checkpoint inhibition, and where new approaches to induce immunity are a key focus for many groups.

Training opportunities

As mentioned above, the students would be trained in flow cytometry, cell culture, functional B and T cell assays, in vivo immunology techniques, as well as molecular approaches including scRNASeq, TCR sequencing, spatial transcriptomic studies, and the accompanying bioinformatic approaches (mainly based in R studio). As well as testing the panel of new molecular tools generated by our collaborators, there will also be opportunities to develop new adenoviral vector and mRNA tools.

References

Barnes, E., ... A. Nicosia, R. Cortese, and P. Klenerman, Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci Transl Med, 2012. 4(115): p. 115ra1.

Provine, N.M., A. Amini, L.C. Garner,...and P. Klenerman, MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science, 2021. 371(6528): p. 521-526.

Garner, L.C., ...N.M. Provine*, and P. Klenerman*, Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. Nature Immunology, `(in press) September 2023.

Cupovic, J....N.M. Provine... P. Klenerman*, and B. Ludewig, Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8(+) T cells. Nat Immunol, 2021. 22(8): p. 1042-1051.

D'Alise, A.M. ... A. Nicosia, Adenovirus Encoded Adjuvant (AdEnA) anti-CTLA-4, a novel strategy to improve Adenovirus based vaccines against infectious diseases and cancer. Front Immunol 14, 1156714 (2023).

43. Peptide specific natural killer cell receptors in cancer – ³ Malcom

Sim

Primary Supervisor: Malcom Sim Second Supervisor: Prof. Tim Elliott Eligibility: Track 3 are eligible to apply for this project

Abstract

Natural killer (NK) cells are important innate immune effector cells that can directly kill tumours and produce proinflammatory cytokines. NK cell function is tightly regulated by an array of germline encoded activating and inhibitory receptors. The killer-cell immunoglobulin-like receptors (KIR) are a family of activating and inhibitory NK cell receptors that bind class I human leukocyte antigens (HLA-I). HLA-I molecules present short peptide antigens to T cells but the contribution of HLA-I bound peptides to KIR binding is poorly understood. Recent work by the Sim lab demonstrated that KIR binding can be highly peptide dependent, with activating KIR displaying high peptide-specificity, analogous to recognition by CD8+ T cells [1, 2]. The goal of this project will be to develop high-throughput systems to identify novel ligands for activating KIR across multiple HLA-I allotypes. Tools that can predict KIR binding peptides from sequence will be developed using machine learning and other computational approaches. Using large tumour genome datasets (such as TCGA), predicted neoantigens will be analysed for their impact on predicted KIR binding peptide to tumours for the purpose of redirecting NK cells towards. This work will advance our basic understanding of peptide-specific NK cell receptors, their role in NK cell recognition of tumours and explore their therapeutic potential.

Research objectives and proposed outcomes

The KIR are critical regulators of NK cell function. Disease association studies link specific KIR-HLA-I ligands with multiple disease processes including cancer, infectious disease, autoimmunity and disorders of pregnancy [3]. Understanding the unique features of KIR-HLA-I interactions is necessary to understand these disease associations and the contribution of KIR+ NK cells. Furthermore, defining the peptide-specificity of KIR is required to potentially exploit this property in therapeutic settings. The award will allow the student to absorb the technical and scientific knowledge of multiple collaborators, while adapting them to the problem of determining KIR specificity. The student will translate this knowledge to understand the contribution of KIR binding peptides to NK cell recognition of cancer.

Objective 1. Develop high throughput screens to determine KIR peptide-specificity

Comprehensively determining the sequences of KIR binding peptides involves multiple layers of complexity. Firstly, there are many KIRs. Our lab focuses on the HLA-C binding KIRs of which there are 3 inhibitory receptors (KIR2DL1, KIR2DL2 and KIR2DL3) and four activating receptors (KIR2DS1, KIR2DS2, KIR2DS4 and KIR2DS5). Secondly, HLA-C is highly polymorphic, with thousands of different allotypes. Uncovering *bone fide* ligands for KIR bind is fundamental to understanding their contribution to NK cell function and diseases linked to specific KIR-HLA-I combinations. By collaborating with Dr. Ricardo Fernandes (CAMS-COI), we will exploit the multiple technologies (such as yeast display) previously developed for determining the specificity of T cell receptors (TCRs) [4]. We will develop cell-based platforms to express large libraries of DNA encoded HLA-I bound peptides for screening via binding to soluble KIR.

Objective 2. Utilize KIR binding data into tools that can predict KIR binding from sequence

KIR binding screens (*Objective 1*) will generate large datasets of KIR binding and non-binding peptides. The next goal will be to integrate this data into tools that can predict KIR binding peptides from sequence. Predicting KIR binding peptides is necessary to understanding how changes in HLA-I bound peptides can impact KIR binding and NK cell function. Developing these tools will be in collaboration with Prof. Hasheem Koohy (WIMM), an expert in machine learning whose team is developing tools to predict ligands for TCRs.

Objective 3. Investigate the contribution of peptide dependent changes in KIR binding to NK cell recognition of tumours With the ability to predict KIR binding from sequence (*Objective 2*), the contribution of KIR binding peptides to NK recognition of tumours will be investigated. Firstly, the predicted impact of neoantigens on KIR binding will be assessed in large patient datasets with known tumour genome sequencing and patient prognosis, such as the TCGA. Predicting neoantigens from TCGA is feasible and has been published by other groups [5]. Patients will be stratified by whether neoantigens are predicted no have no impact on KIR binding, increase binding to activating receptors or increase binding to inhibitory receptors. Our second approach will investigate how delivering peptide ligands for activating KIR to tumours may render them susceptible to NK cell killing. Using soluble peptide first, followed by antibody-based

technology [6], we will test whether changes in the HLA-I bound peptides on tumours can modify their susceptibility to NK cell lysis.

With the ability to predict KIR binding from sequence (*Objective 2*), the contribution of KIR binding peptides to NK recognition of tumours will be investigated. Firstly, the predicted impact of neoantigens on KIR binding will be assessed in large patient datasets with known tumour genome sequencing and patient prognosis, such as the TCGA. Predicting neoantigens from TCGA is feasible and has been published by other groups [5]. Patients will be stratified by whether neoantigens are predicted no have no impact on KIR binding, increase binding to activating receptors or increase binding to inhibitory receptors. Our second approach will investigate how delivering peptide ligands for activating KIR to tumours may render them susceptible to NK cell killing. Using soluble peptide first, followed by antibody-based technology [6], we will test whether changes in the HLA-I bound peptides on tumours can modify their susceptibility to NK cell lysis.

Translational potential.

The translational potential of this project is two-fold and described largely in *Objective 3*. Firstly, patient prognosis/response to therapy will be analysed in the context of predicted changes in KIR binding due predicted neoantigens. This may lead to discoveries of patient subgroups more amenably to NK based therapeutics. Secondly, methods to deliver peptides ligands for activating KIR will be developed with the goal of redirecting tumour associated NK cells towards the tumour. In addition, this work will provide a deeper understanding of KIR-HLA-I interactions facilitating the development of novel therapeutic opportunities in diseases associated with KIR.

Training opportunities.

The student will deploy a multitude of wet and dry lab techniques as part of this project. Prominent wet lab techniques will be molecular biology (cloning, library preparation etc), cell biology (transfection, transduction, sterile culture) and flow cytometry. Dry lab techniques will include standard lab tools such as FlowJo and Prism, some basic coding and database searches will also be employed.

References

1. Sim, M.J.W., et al., *Innate receptors with high specificity for HLA class I-peptide complexes*. Sci Immunol, 2023. **8**(87): p. eadh1781.

2. Sim, M.J.W., et al., *Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C.* Proc Natl Acad Sci U S A, 2019. **116**(26): p. 12964-12973.

3. Parham, P. and A. Moffett, *Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.* Nat Rev Immunol, 2013. **13**(2): p. 133-44.

4. Joglekar, A.V. and G. Li, *T cell antigen discovery*. Nat Methods, 2021. **18**(8): p. 873-880.

5. Wu, J., et al., *TSNAdb v2.0: The Updated Version of Tumor-specific Neoantigen Database*. Genomics Proteomics Bioinformatics, 2022.

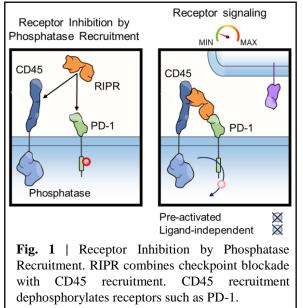
6. Millar, D.G., et al., *Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy.* Nat Biotechnol, 2020. **38**(4): p. 420-425.

44. Modulating inhibitory receptor signalling to enhance the T-Cell response in Cancer – ^{3,4} Ricardo Fernandes

Primary Supervisor: Ricardo Fernandes

Second Supervisor: Prof. Omer Dushek

Eligibility: Tracks 3 and 4 are eligible to apply for this project


Abstract

The T cell response against pathogens, tumours, and self relies on integrating signals from diverse receptors, including the T cell receptor, co-stimulatory receptors, and inhibitory receptors (IRs). Inhibitory receptors counterbalance positive signals, suppressing T cell responses. A feature of IRs is the presence of signalling motifs in their cytoplasmic tail, which attenuate T cell responses. While antibody blockade, which limits IR/ligand interactions, represents a significant advancement in antitumour therapy, only a small fraction of patients benefits from this approach. Moreover, the mechanistic basis whereby IRs damped T cell responses is still poorly understood, and a systematic comparison of the potency, mediators, and targets of various clinically relevant IRs has not yet been undertaken. This project aims to dissect ligand-driven and ligand-independent IR signalling processes to gain insights into the IR signalling mechanism. This will be achieved by determining the potency of IR signalling for a group of receptors, identifying direct mediators of IR signalling, and developing a phosphatase-mediated approach to inhibit IR signalling. This proposal seeks to deepen our understanding of IR signalling and generate novel insights to potentiate T cell responses in cancer.

Research objectives and proposed outcomes

Regulation of T cell signalling by immune checkpoints such as PD-1 and CTLA-4 has been at the centre of recent breakthroughs in cancer immunotherapy. Signalling by PD-1 and CTLA-4 reduces T cell activity and contributes to an

"exhausted" phenotype, severely compromising antitumor responses. In the case of PD-1, binding to PD-L1/2 triggers the tyrosine phosphorylation of signalling motifs and results in the recruitment of cytosolic phosphatases such as SHP1/2, which in turn reduces TCR and CD28 signalling. Strikingly, signalling by several immune receptors relies on the Tyr phosphorylation of signalling motifs. We hypothesise that tonic receptor phosphorylation and sustained signalling by 'ligand-experienced' receptors impact T cell function and resist classic antibody blockade. To address this issue, we engineered a bi-specific molecule to recruit CD45, an abundant and promiscuous receptor tyrosine phosphatase, within close proximity of PD-1 (Fig. 1)¹. In this approach, the phosphatase domain of CD45 acts intracellularly, in cis, on the p-Tyr residues of the PD-1 signalling motif, thus inhibiting sustained signalling. We have shown that Receptor Inhibition by Phosphatase Recruitment (RIPR), potentiates T cell activity beyond that seen with PD-1/PD-L1 antagonist antibodies, both in the presence and absence of PD-1 ligand-binding in vitro, and reduces tumour growth in mouse models¹.

Aim 1: Determine the relative signalling potency of IRs in T cells

IRs have a distinct organisation of inhibitory motifs in their cytoplasmic domain, ranging from non-conventional single tyrosine (Tyr) motifs to a combination of two or more "classic" inhibitory motifs like ITIMs. These distinct domains are likely to affect the IR signalling potency. To test this, we will determine the relative IR potencies by establishing an IR signalling platform in primary CD4+ and CD8+ T cells. We will perform systematic screens to determine the ability to suppress T cell function by various IRs, including PD-1, TIGIT, BTLA, TIM-3, CTLA-4, LAIR-1, ILT-2 and ILT-4. In addition, we will compare IR signalling potencies in the presence and absence of IR-ligand binding using surrogate receptor-ligand pairs.

Aim 2: Identification ofxc early and late mediators of IR signalling

We will determine the direct signalling mediators to IR signalling using targeted protein pull-down strategies complemented by mass spectrometry (MS)-based proteomics (in collaboration with Dr Adan Pinto-Fernandez's Group) and epigenetic profiling (in collaboration with Dr. Chunxiao Song's Group). Moreover, we will map the phosphorylation status of the inhibitory motifs and protein-complex composition by western blot and optimised affinity purification. Next, we will determine the contribution of specific mediators and transcription factors by deleting a single or a combination of targets using CRISPR/Cas9. Collectively, this approach aims to identify early and late signalling mediators of various IRs and their role in suppressing T cell responses.

Aim 3: Development of RIPR-based molecules to inhibit inhibitory receptors

Bispecific diabodies that recruit CD45 phosphatase to IRs, such as PD-1 and CTLA-4, were found to potentiate T cell responses. We aim to extend this concept to target additional IRs, including BTLA, TIGIT and TIM-3, which have been implicated in suppressing antitumour responses. Moreover, we will systematically test the potency of newly generated RIPR proteins using various anti-CD45 nanobodies. Newly generated molecules will be characterised in biophysical and in vitro stimulation assays. Binding on-rate, off-rate and affinity will be determined by surface plasmon resonance. After characterising the binding properties of the RIPR molecules, their ability to potentiate T cell cytotoxic functions will be determined *in vitro* using co-culture assays with T cells and target cells. Markers of T cell activation will be quantified longitudinally using flow cytometry, western blotting and ELISAs. This comprehensive approach is expected to identify determinants of RIPR activity for various checkpoint receptors. This information will be used to guide the design of future antagonists of checkpoint receptor signalling with strong potential for therapeutic applications.

Summary of milestones and expected outcomes

- (i) Obtaining a comparative list of signalling potencies for all tested IRs;
- (iii) identification of early and late signalling mediators of IRs;
- (iv) Providing proof-of-concept for inhibiting IR signalling by phosphatase recruitment;

Translational potential of the project

We expect that the described approach will establish a rapid and facile method to systematically probe the contribution of inhibitory receptors in suppressing T cell effector functions. This information will enable the identification of new targets and guide the development of IR therapeutics. We anticipate the next stage of immunotherapy development to include new molecules that exploit specific aspects of the mechanisms involved in receptor signalling. The RIPR approach may offer a new avenue to directly target receptor phosphorylation and shut down inhibitory receptor signalling with a strong potential for being used to target various surface receptors found in distinct immune cell populations.

Training opportunities

The candidate will receive training in molecular biology, protein design and expression, biophysical characterisation of protein interactions and various cellular assays. Moreover, the candidate will be trained in protein engineering, library design and selection using yeast display. T cell signaling assays will be used to determine the activity of newly generated RIPR molecules, providing an opportunity for training in flow cytometry and MS, among others. This training will allow the candidate to drive fundamental and applied research in academia and industry. The candidate will have full access to the facilities and resources available within the Department and the broader community at the University of Oxford.

Key publications

- Fernandes RA, Su L, Nishiga Y, Ren J, Bhuiyan AM, Ali LR, Majzner R, Ohtsuki S, Rietberg SP, Yang X, Picton L, Savvides CS, Mackall, CL, Sage J, Dougan M, Garcia KC. Immune receptor inhibition through enforced phosphatase recruitment. (2020) Nature, Oct;586(7831):779-784
- Fernandes RA*, Ganzinger KA*, Tzou J, Jonsson P, Lee SF, Palayret M, Santos AM, Chang VT, Macleod C, Lagerholm BC, Lindsay AE, Dushek O, Tilevik A, Davis SD, Klenerman D. A cell-topography based mechanism for ligand discrimination by the T-cell receptor. (2019) Proc Natl Acad Sci U S A. Jul; 116(28), 14002-14010
- 3. Chang VT*, Fernandes RA*, Ganzinger KA*, Lee SF*, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJ, Klenerman D, Aricescu AR, Davis SJ. Initiation of T cell signaling by CD45 segregation at 'close contacts'. (2016) Nat Immunol. May;17(5):574-82

45. Engineered oncolytic herpes virus therapy for neuroblastoma -3,4

Dr Alistair Easton

Primary Supervisor: Dr Alistair Easton Second Supervisor: Dr Kerry Fisher Eligibility: Tracks 3 & 4 eligible to apply for this project

Abstract

Neuroblastoma (NB) is a peripheral neuroectodermal malignancy that accounts for 15% of paediatric cancer related mortality and is the most common fatal extra-cranial malignancy in children. Current treatment for high-risk cases is multimodal, involving surgery, chemoradiotherapy and bone marrow ablation. This is a gruelling treatment regime with significant toxicity and high risk of relapse.

Immunotherapy, in the form of a mAb targeting ganglioside GD2, has resulted in a step-change in survival. However, treatment is often sub-optimal and limited due to on-target, off-tumour binding to peripheral nerves, which results in intractable neuropathic pain. Despite significant improvements in outcomes, the majority of high-risk patients still die from their disease.

Neuroblastoma is a model immune-cold tumour, that downregulates MHCI and exhibits low mutational burden. As such, patients do not respond to immune check-point inhibitors¹. However, complete spontaneous regression of widely metastatic, stage 4s, NB is a well-recognised phenomenon that correlates with evidence of immune activation², including autoimmunity. In addition, pre-treatment immune infiltrate is highly predictive of survival. These observations indicate that NB will be amenable, and highly sensitive, to immune therapy, if an effective protocol can be developed.

This research project explores a novel approach that leverages attenuated herpes viruses to enhance the precision and efficacy of immune therapy against NB. We will collaborate with NB specialists at The University of Southampton, who have developed and characterised a number of spontaneous and allograft NB mouse models, as well as patient derived NB cell lines³. These are ideal for testing our viral constructs, which are capable of infecting murine and human cells, and delivering immunostimulating molecules.

The research involves a multi-faceted approach, combining virology, immunology, and cancer biology. We will use single cell multiplex imaging and advanced image analysis software to investigate the ability of our viral constructs to infiltrate tumour tissue, trigger localized immune responses, and induce tumour cell death. Furthermore, the project seeks to understand the potential synergistic effects of genetically modified herpes viruses, expressing existing immunotherapeutic modalities, such as anti-GD2 mAb, cytokines and immune checkpoint inhibitors. We will examine the impact of this approach on localised and overall systemic immunity, ensuring that the therapy elicits a potent and specific anti-tumour immune response while minimizing adverse effects.

Neuroblastoma is an area of unmet need and this combinatorial approach may unlock new avenues for enhanced tumour eradication and durable responses in cancer patients.

Objectives:

- Create attenuated oncolytic herpes virus constructs that express NB targeting mAb and immune stimulating molecules.
- Use murine models and human cell lines to characterise virus and immune infiltration, focusing on localised and systemic immune responses to NB.
- Optimise the combination of immune modulating modalities while minimising side-effects.

Proposed Outcomes:

- Using pre-clinical models, demonstrate enhanced immune infiltration and systemic activation to generate durable anti-NB immune responses.
- Show localised and systemic tumour eradication and/or sensitisation to current therapies.

Academic value

Neuroblastoma is an ideal model immune-cold tumour that we know is amenable to spontaneous immune eradication by pathways that we do not fully understand. This project is an opportunity to study and manipulate the anti-tumour immune response through precision targeting of the tumour and its microenvironment.

Collaborations

This collaboration involves the Translational Histopathology Lab (THL), led by academic clinical pathologist Dr Alistair Easton specialising in multiplex single cell imaging, and Prof Len Seymour and Dr Kerry Fisher's gene therapy group, specialising in precision immune therapy using viral delivery vectors. We will collaborate with Dr Juliet Gray's Neuroblastoma research group at the University of Southampton, who specialise in immunotherapies and preclinical modelling of NB. This award will allow a doctoral student gain experience generating therapeutic viral vectors, applying these to preclinical mouse models of disease and imaging/topological analysis of tumours.

Translational potential

As described earlier, NB is an area of unmet need. Current treatments are inadequate, resulting in high morbidity and mortality in a paediatric population. The dire prognosis of this disease means it is a prime target for advanced precision therapeutics, such as mAb. Whilst immune therapy has shown transformative potential, it is currently hampered by toxicity, partly due to a lack of precision. This project addresses this issue by allowing the delivery of small molecules directly into the tumour site. There are well established global clinical trial networks for this disease, some led by our collaborators, meaning that any improvements in treatment will have a rapid path to clinic.

Training Opportunities:

This project will involve tissue culture, virology, immunology, oncology, molecular biology, genetic engineering, animal handling, histology, multiplex fluorescence immunohistochemistry, image analysis, using machine learning software and statistics.

References

1. Anderson, J., Majzner, R. G. & Sondel, P. M. Immunotherapy of Neuroblastoma: Facts and Hopes. *Clinical Cancer Research* 28, 3196 (2022).

2. Hammouche, D., Easton, A., Lopez, M. & Gray, J. Combining multiplex immunohistochemistry with computer aided topographical and single-cell analysis to investigate the mechanism of spontaneous regression in a case of metastatic congenital neuroblastoma. (2020) doi:10.47496/NL.CRIO.2020.01.

3. Webb, E. R. et al. Immune characterization of pre-clinical murine models of neuroblastoma. Sci Rep 10, (2020).

46. Pre-Clinical modelling of oncolytic virus therapy for hepatic Colorectal Cancer metastases using ex-vivo, perfused, hepatectomies^{3,4} Dr Kerry Fisher

Primary Supervisor: Dr. Kerry Fisher Second Supervisor: Dr. Alistair Easton Eligibility: Tracks 3 & 4 eligible to apply for this project

Abstract

Colorectal cancer (CRC) is the fourth most common cancer in the UK, affecting 43,000 people annually. Hepatic metastases occur in 25-30% of patients. If there are multiple deposits, treatment options are limited and 5-year survival is 11%. In order to improve upon this, we need to better understand the complex vascular, immune and stromal microenvironment in liver metastases, so that we can achieve better penetration of therapeutics and counter resistance mechanisms.

Conventional cell culture systems fail to recapitulate the complexity of the vascular and stromal microenvironment. To address this, we have developed an ex-vivo liver explant model, using tissue obtained from patients undergoing partial hepatectomy for CRC metastases. These serve as an invaluable resource for studying real tumour responses within a physiologically relevant context.

Initially, this project will determine the physiological effects of our perfusion model on the liver and tumour, using serial histological biopsies and metabolic / hypoxia markers. Further to this, single-cell imaging/multiplex, will determine the baseline immune and stromal microenvironment, and any changes due to the explant model. Establishing baseline parameters will allow this model to be used to study chemotherapeutic, radiological and biological agents.

The second half of this project will involve perfusing our model with oncolytic viruses, engineered to deliver immunomodulatory molecules directly into tumour cells. We will study the distribution and localised effects of virus infection. In addition, we will introduce leukocytes in order to study immune-cell trafficking and in-situ immune responses. Ultimately, we will optimise the immuno-modulatory agents to enhance tumour killing and provoke durable anti-tumour immune responses. Dynamic sampling will allow a temporal analysis to capture real-time changes in gene expression, cellular behavior, and therapeutic resistance. This comprehensive approach will provide unprecedented granularity in understanding how metastatic tumours in this microenvironment respond to treatment

Objectives:

1. Characterise the baseline physiological and metabolic changes that occur in liver and tumour in our ex-vivo, liver, explant model.

2. Deep phenotype and topologically analyse the baseline immune and stroma components in CRC hepatic metastases.

3. Topologically map penetration, infection, spread and tissue responses (including immune responses) to oncolytic virus infusion in our ex-vivo model.

4. Characterise and optimise tumour killing and in-situ immune responses following perfusion with armed oncolytic viruses, with the aim of generating durable anti-tumour immunity with minimal bystander pathology.

Academic value

Our ex-vivo liver explant model is an invaluable resource for pre-clinical modelling of any liver primary, CRC and non-CRC metastatic malignancy where tissue is available from partial hepatectomies. The model can used for conventional chemotherapy, radiotherapy and embolization. This project addresses the need for a baseline understanding of the physiological changes that occur due to the ex-vivo perfusion process. The dynamic sampling and imaging protocols, that will optimised as part of this project, will be easily transferable into alternative therapeutic models.

Collaborations

This will be a collaboration between Prof Len Seymour's and Dr Kerry Fisher's molecular therapy group, the Translational Histopathology Lab (THL), led by Dr Alistair Easton, and the Tumour Evolution and Cell Identity group, including Mr Alex Gordon-Weeks. It will combine expertise in precision gene therapy, histopathology, imaging and hepatobiliary surgery. This award will facilitate this new collaboration between these groups.

Translational Potential:

I. This will result in a robust and novel pre-clinical modelling tool that can be used in a variety of diseases and with a variety of therapeutics.

II. Oncolytic viruses are a novel technique for precision gene therapy and immune stimulation. This project will improve our understanding of the biodistribution and effects of these viruses, and allow us to test novel constructs to achieve optimal responses.

Training Opportunities:

This project will provide opportunities/training in tissue culture, ex-vivo tissue preps/tissue handling, histological analysis, multiplex imaging, molecular biology, virology, immunology and oncology.

47. Building Patient specific digital twins for cancer drug development and cancer treatment -^{3,4} Assoc Prof. Rachael Bashford Rogers

Primary Supervisor: Assoc Prof. Rachael Bashford Rogers **Second Supervisor:** Dr. Isabela Pedroza-Pacheco **Eligibility:** Tracks 3 & 4 eligible to apply for this project

Abstract

Cancer poses a highly multi-factorial problem, where no single dataset captures the full complexity of the tumour, the tumour microenvironment and accompanying host genetics, vasculature, lymph node and co-morbidity components that have been shown to impact patient survival and response to treatments, resulting in a highly complex problem. By capturing real-time data, the digital twin understands the current state, simulates the future state and is a basis for optimisation. It enables to detect problems early, can be used as a basis for *in silico* testing and is an opportunity to develop novel therapeutics. This project proposes to construct high-quality multi-scale cancer datasets, virtual cohorts of patients and patient digital twins which can be used for improved screening, diagnosis, clinical decision making, disease management and drug development. We will assess the short- and long-term predictive and prognostic power of such digital twins and quantify the explainable and interpretable key features underlying these predictions. Through the development of virtual clinical trials, we aim to accelerate the selection of drug combination and prioritisation in patient therapies. Overall, this may lay the foundation for more accurate and mechanistically-driven clinical decision support systems and accelerate therapeutic design in cancer.

Research objectives and proposed outcomes

Objective 1. *Develop high-quality multi-scale cancer datasets and virtual patient cohorts*. Cancer poses a highly multi-factorial problem, where no single dataset captures the full complexity of cancer. In this project, you will:

- 1. Bring together cancer datasets containing all -omic data types describing key features, including key genetics, transcriptomic signals, cellular neighbourhoods, cellular interactions, acellular signals, and wide organ system or whole-body signals across tumour types and corresponding healthy tissue.
- Train different multi-layered machine learning models, with others developed through the hub, to characterise the short- and long-term predictive power, predict optimal patient treatment, provide interpretable biological learning, and identify suitable lead targets and molecules in the drug discovery process.
- 3. Generate virtual cohorts of patients or tumours (*i.e.* cohorts of human virtual twins) based on biological data. These realistic populations of virtual patients will be generated with the desired clinical characteristics in terms of clinical stage, grade, molecular alterations and ethnicity, sex, age and comorbidities. Metrics will objectively assess the performance of each model in making correct predictions.
- 4. Leverage virtual twins together with augmented synchronous data and partial longitudinal data to reconstruct disease trajectories.

This work will be done collaboratively with experts in UCL and Sheffield.

Objective 2. *Provide biologically interpretable outputs from ex vivo experimentally-informed virtual twins.* We aim to develop global models of tumour microenvironments (TME) which could be easily streamlined into a clinical workflow using clinical data and routinely collected clinical samples. Such models will consist of five components:

- 1. To identify biologically-informed feature selection from routinely collected clinical datasets learnt from higher resolution reference datasets. This may be applied to cancers where biopsies are routinely taken.
- 2. Clinical history data needs to be encoded and features selected, including tumour genotype.
- 3. Drug sensitivity experimental work for a subset of patient tumour and healthy tissue will be developed.
- 4. These three components could be fed into a model of the TME. This would then inform patient outcome model in which key features could be pulled out.
- 5. Finally, these *ex vivo* experimentally-informed virtual twins will be projected onto the models in *Objective 1* to inform and update *in silico* experiments which will be performed in the virtual clinical trials. Virtual clinical trial simulations will be parameterised to reproduce the outcome of several real trials related to cancer treatment, where responders, non-responders and partial responders may be observed.

OXFORD

Objective 3. Accelerating drug discovery for targeted patient groups. We will consider the different cancer drug classes together for accelerated drug discovery for targeted patient groups together with key novelties in each area prioritising

specificity and reduction of off-target effects:

- Chemotherapeutic agents targeting key tumour genes will be accelerated by coupling machine-learning (ML) with physics-based (PB) methods. Data generated from PB methods will be fed into ML models which are iteratively refined to generate potentially better structures. The most promising compounds will be synthesised and their thermodynamic and pharmacokinetic properties be examined, and validated in *in vitro* cell line experiments in collaboration with UCL and Sheffield.
- Immunotherapeutic targets will be predicted and prioritised using perturbation network modelling of cellcell communication networks derived from single cell multi-omics data. This process will be run over patient-specific tumour and germline mutational profiles, and biomarkers will be predicted for patient stratification for each prioritised molecular target.

Comparisons of the effect of the different drug approaches and combinations will be tested using the patient slideperfusion system (outlined in objective 2) on relevant patient sets (collectively decided by clinicians, biologists and data scientists). Our virtual twins can be used to predict the treatment efficiency in each patient. Finally, we will apply crosswork package cutting approaches to gain insights into off-target effects of prioritised drugs/targets.

Translational Potential

This study will provide a unique platform to understand the relationship between different tumour-associated features across scales (molecular, cellular, acellular, organ systems, systemic), with the overall aim of defining improved therapeutic options and patient outcomes on a personal basis. Furthermore, the methods developed here will not just be broadly applicable to cancer, but will have wider applications in biotechnology and in health services worldwide. This will be achieved through the development and application of novel experimental and computational approaches, working in partnership with a global network of clinicians, immunologists and sample/data cohorts.

Training opportunities: The DPhil will gain experience and training in laboratory molecular biology, immunology, cancer biology, and bioinformatics. These include:

- Genomic, bulk and single-cell transcriptomic, and other 'omic analyses across large patient cohorts.
- Development and/or implemmentation of novel computational pipelines for the integration of multi-scale longitudinal data with clinical covariates.
- Model building and generation of digital twins.
- The project will work in partnership with a global network of clinicians, immunologists, and computational experts.

The Bashford-Rogers laboratory has a strong track record of collaboration over the last 15 years and established systems for co-supervision.

References:

1. Single-cell immune multi-omics and repertoire analyses in pancreatic ductal adenocarcinoma reveal differential immunosuppressive mechanisms within different tumour microenvironments (2023) (<u>https://www.biorxiv.org/content/10.1101/2023.08.31.555730v1</u>) Shivan Sivakumar, Ashwin Jainarayanan, Edward Arbe-Barnes, *et al.*

Predicting risk of pancreatic cancer in individuals with new-onset type-2 diabetes in primary care: protocol for the development and validation of a clinical prediction model (<u>*QPancreasD*</u>, 2021) (<u>https://www.medrxiv.org/content/10.1101/2021.12.22.21268161v1</u>)</u> Pui San Tan, Ashley Kieran Clift, Weiqi Liao, *et al.* Analysis of the B cell receptor repertoire in six immune-mediated diseases. (<u>*Nature*</u>, 2019) RJM Bashford-Rogers, L Bergamaschi, EF McKinney, *et al.*

4. Opportunities and challenges for digital twins in biomedical research: Proceedings of a workshop in brief (<u>The National</u> <u>Academies Press</u>, 2023). Linda Casola, *et al*.

48. Influence of viral based delivery methods on distinct pathways of antigen uptake and presentation: implications for precision vaccine development - ^{3,4} Prof. Sarah Rowland-Jones

Primary Supervisor: Prof. Sarah Rowland-Jones **Second Supervisor**: Dr Ester Gea-Mallorquí **Eligibility:** Tracks 3 & 4 eligible to apply for this project

Abstract

Myeloid-cell-based immunotherapies are becoming increasingly popular, as they are able to target the early stages of the immune response involving dendritic cells (DCs). Most such immunotherapies use lentiviral (LV)-based vaccines to induce antigen expression in DCs. To optimise these therapies, it is important to gain a better understanding of the biology of LV-DC interactions.

This project aims to decode the very fundamentals of antigen presentation. We aim to understand what factors influence the route of antigen uptake, based on our previous observations of antigen delivery using different lentiviralbased vectors. We have detected marked differences in the way two closely related human retroviruses interact with DCs, and plan to use this knowledge to develop vaccine strategies that optimize the generation of potent T-cell responses against immunogens from persistent viruses and tumours.

Dendritic cells (DCs) play a pivotal role in priming adaptive immune responses. As professional antigen-presenting cells, DCs instruct the development of the adaptive response, mainly through distinct routes of antigen presentation. How an antigen is delivered to DCs can have a profound impact on its processing, loading into the antigen presenting pathway and subsequent presentation to the adaptive immune system.

Typically, intracellular antigens will be processed by the proteasome and loaded into major histocompatibility complex (MHC) class I molecules; while internalised external antigens will be digested and loaded into MHC class II in late endosomes before being transported to the plasma membrane. However, external antigens can also be presented via MHCI in a process known as cross-presentation, which has been shown to be particularly powerful in inducing effective CD8+ T cell responses against tumours.

LV are based on the HIV-1 backbone. However, HIV-2 is a genetically and structurally similar virus that more rarely causes AIDS as it is able to induce an immune control on the infection. We have previously shown that HIV-2 viral control correlates with the potent induction of polyfunctional and high avidity cytotoxic T lymphocytes (CTLs)^{1–3}. The generation of similarly potent polyfunctional T-cell responses against tumour antigens is a key goal for therapeutic cancer vaccines.

Pathogenic HIV-1 and immune-controlled HIV-2 interact differently with DCs^{4–5}. Our initial observations show that HIV-1 is more likely to be captured on the surface of DCs, whereas very little HIV-2 is captured, so the virus largely causes DC infection. We have data to show which viral proteins are responsible for these distinct interactions. We hypothesise that the different interactions between HIV-1 and HIV-2 with DCs will translate into distinct pathways of antigen delivery, presentation and development of an adaptive response with distinct qualities, that will ultimately correlate with long-term immune control. In this project we will investigate how the initial priming of the adaptive response by HIV-1 and HIV-2 dictates the induction of a potent CD8+ T-cell response, and how specific viral proteins can be used to divert the immune response into particular pathways. These studies should lead to an understanding of how we can improve LV platforms to develop effective cancer vaccines.

Training opportunities

This project offers the candidate an excellent opportunity for training in a multi-disciplinary range of skills and state-ofthe-art laboratory techniques, including cellular immunology (flow cytometry, dendritic cell culture and functional assays of T-cell activity), virology, proteomics analysis, confocal microscopy and antigen processing studies. In addition, analysis of laboratory data in relation to clinical data will be performed to understand the potential translational impact of the laboratory studies.

The student will have access to additional training on scientific writing and presentation of research findings: he/she will be encouraged to present his/her work during regular weekly lab and unit meetings, take part in regular journal clubs, and attend national/international conferences, as well as preparing the first draft of manuscripts and review articles in close collaboration with the supervisors.

References

- Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA. Polyfunctional T cell responses are a hallmark of HIV-2 infection. *Eur J Immunol*. 2008;38(2):350-363. doi:10.1002/eji.200737768
- de Silva TI, Peng Y, Leligdowicz A, Zaidi I, Li L, Griffin H, Blais M-E, Vincent T, Saraiva M, Yindom L-M, van Tienen C, Easterbrook P, Jaye A, Whittle H, Dong T, Rowland-Jones SL. Correlates of T-cell-mediated viral control and phenotype of CD8(+) T cells in HIV-2, a naturally contained human retroviral infection. *Blood*. 2013;121(21):4330-4339. doi:10.1182/blood-2012-12-472787
- Leligdowicz A, Onyango C, Yindom L-M, Peng Y, Cotten M, Jaye A, McMichael A, Whittle H, Dong T, Rowland-Jones S. Highly avid, oligoclonal, early-differentiated antigen-specific CD8+ T cells in chronic HIV-2 infection. *Eur J Immunol*. 2010;40(7):1963-1972. doi:10.1002/eji.200940295
- 4. Kijewski SDG, Akiyama H, Feizpour A, Miller CM, Ramirez N-GP, Reinhard BM, Gummuluru S. Access of HIV-2 to CD169-dependent dendritic cell-mediated trans infection pathway is attenuated. *Virology*. 2016;497:328-336. doi:10.1016/j.virol.2016.07.029
- Duvall MG, Lore K, Blaak H, Ambrozak DA, Adams WC, Santos K, Geldmacher C, Mascola JR, McMichael AJ, Jaye A, Whittle HC, Rowland-Jones SL, Koup RA. Dendritic Cells Are Less Susceptible to Human Immunodeficiency Virus Type 2 (HIV-2) Infection than to HIV-1 Infection. J Virol. 2007;81(24):13486-13498. doi:10.1128/jvi.00976-07
- 6. Gea-Mallorqui, E. and Rowland-Jones, S.L. DC-targeting Lentivectors for Cancer Immunotherapy Immunotherapy Advances 2023 (in press)

49. Spatial analysis of the bone marrow in myeloproliferative neoplasms DNA. -⁴ Prof. Helen Byrne

Primary Supervisor: Prof. Helen Byrne **Second Supervisor**: Dan Royston, Jens Rittscher, Ros Cooper **Eligibility:** Track 4 applicants are eligible to apply for this project

Abstract

Myeloproliferative neoplasia (MPN) is a blood cancer characterised by overproduction of myeloid blood cells typically driven by well-defined driver mutations in JAK2, CALR and MPL. However, genotype-phenotype correlation is unpredictable and risk of disease progression is variable. MPN patients are at increased risk of venous thromboembolic events, and some patients develop myelofibrosis or experience acute leukaemic transformation, events associated with poor clinical prognosis. Recent single-cell sequencing approaches in murine models have confirmed the role of the bone marrow microenvironment in driving fibrosis progression in MPN, with critical reprogramming of stromal populations in the context of inflammation and neoplastic haematopoietic stem and progenitor cells (HSPCs) populations. However, little is known about the spatiotemporal relationships between these cell populations in MPN. We hypothesise that insitu spatial approaches will provide key insights into how stromal and immune populations in the bone marrow niche drive fibrosis development. Opportunities afforded by new highly multiplexed spatial transcriptomic approaches will allow in-situ phenotyping of these populations at single cell resolution. We will use multiple transcriptomic-based approaches to map the bone marrow niche in patients with MPN and those with healthy/reactive marrows. We will use novel computational and mathematical approaches to analyse and integrate these datasets. We will cross-validate key biomarkers using protein-based approaches including multiplex immunofluorescence and immunohistochemistry across larger clinical cohorts. This has the potential to identify markers of early-stage disease progression and guide the search for novel therapeutic targets.

Research objectives and proposed outcomes

Background: The chronic myeloproliferative neoplasms (MPN) are largely underdiagnosed blood cancers characterised by the overproduction of blood cells derived from haematopoietic stem and progenitor cells (HSPCs) that harbour mutations resulting in cytokine-independent or hypersensitive proliferative signals. In over 90% of MPN, a driver mutation in the genes encoding JAK2, CALR or MPL results in constitutive activation of the MPL-JAK-STAT signalling pathway. Despite this commonality, disease phenotype and risk of progression in MPN are highly variable.

The origin and nature of the earliest cellular and extracellular abnormalities in MPN have recently been elucidated using RNA sequencing and genetic fate-tracing experiments in mouse and human. Key insights include recognition of early disease initiation in the endosteal niche adjacent to the bone surface, and the perivascular niche within the central area of the bone marrow. Reprogramming and abnormal differentiation of stromal cells in these regions, fuelled by mutation-bearing HSPCs and inflammation, appear fundamental to the emergence and evolution of MPN within various murine MPN models. However, the significance of these pathological processes within the bone marrow remains unclear. Further, the spatiotemporal relationships of key pathological changes occurring in bone marrow biopsies from newly diagnosed and progressing MPN patients are not well understood. New spatial transcriptomic platforms allow for insitu analysis of both cellular phenotype and pathway activation within tissue microenvironments with up to single-cell resolution. The complexity of these highly multiplexed, high-resolution datasets and challenges associated with their interpretation are becoming increasingly apparent.

Using a range of complementary approaches, including automated morphological analysis, multiplexed immunostaining (IF) and whole slide / regional spatial transcriptomics, we will generate powerful, multi-modal spatial datasets and develop novel computational and mathematical approaches to comprehensively characterise the cellular and extracellular matrix of patient biopsies. This will enable us to determine the key spatial changes in the tissue microenvironment at MPN initiation and to track subsequent changes that correspond to disease progression, including myelofibrosis. Using complementary spatial protein and gene-expression data employing different technologies and different commercial platforms, we will build robust and validated computational models of the marrow in health and disease. The multi-platform approach will also enable us to investigate the extent to which shared and overlapping probes improve the accuracy and robustness of inference about protein expression levels drawn from spatial transcriptomic data. Such insights will have short-term implications for current diagnostic approaches to MPN and will inform the search and evaluation of novel therapeutics. In this way, we aim to achieve the following aims and objectives:

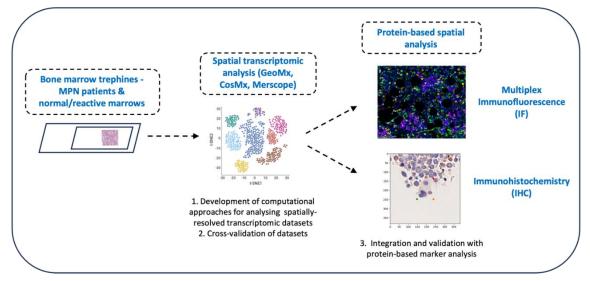


Figure 3: Overview of project workflow

Aims and objectives:

- (1) To develop novel computational and mathematical approaches for the analysis of highly multiplexed spatially-resolved datasets to facilitate whole slide / regional computational modelling of the bone marrow microenvironment in normal and MPN diagnostic samples
- (2) To use these approaches to analyse spatial transcriptomic data generated with existing commercial platforms (Merscope & Nanostring GeoMx/CosMx)
- (3) To cross validate transcriptomic data by comparative analysis of shared/overlapping probe-sets from competing commercial platforms employed under (1)
- (4) To validate protein expression analysis using sample-matched multiplexed immunofluorescence and immunohistochemistry sample staining
- (5) To create a spatial expression atlas of normal bone marrow (and MPN) from whole slide bone marrow samples

Academic value of the research and funding justification: Funding for a DPhil student will enable us to transform our understanding of healthy bone marrow to include detailed information about its spatial structure and how this changes in MPN and subsequent disease progression. Realising this goal will requires A multidisciplinary team who work closely together is needed to address the new challenges associated with realising this goal. The requested funds will cover the costs of a graduate student who will carry out research in the Mathematical Institute.

Collaborations: The project will initiate a new, multidisciplinary collaboration between Byrne, Rittscher, Royston and Cooper, building on an established, successful collaboration between Royston and Rittscher. The student will make frequent visits to the labs of Royston and Cooper where they will interact with pathologists and clinicians investigating MPN and other diseases. This will enable them to learn the relevant MPN biology and how to use different imaging platforms. Byrne and Rittscher will meet weekly with the student to provide guidance on the image analysis methods, while the full team will meet monthly.

Translational potential: This project will enable us to reclassify the bone marrow of healthy and MPN patients based on spatial cell interactions. Identifying MPN-specific cell interactions associated with disease progression will improve diagnosis and assist with the identification of signalling pathways that could be targeted to normalise aberrant cell-cell communication. The project will facilitate spatial biomarker development and identification of novel therapeutics for MPN. It will also generate new methodologies for analysing multi-modal data and strengthen expertise in multidisciplinary approaches to tackling cancer. As such, it will contribute to the scientific themes "Cancer big data" and "Early cancer detection".

Training opportunities: The student will learn how to use and develop software for the extraction, analysis and interpretation of spatial information from multiplexed and spatial transcriptomics images. The project would suit a mathematician (or similarly numerate graduate) interested in applying statistical, mathematical and computational techniques to biological imaging data or a pathologist interested in the digital image analysis and quantification.

References

- 6. H Ryou et al (2023). Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia. 37(2): 348-358.
- 7. K Sirinukunwattana et al (2020). Artificial intelligence-based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients. Blood Adv. 4 (14): 3284-3294.
- 8. JA Bull and HM Byrne (2023). Quantification of spatial and phenotypic heterogeneity in an agent-based model of tumour-macrophage interactions. *PLOS Computational Biology* 19: e1010994.
- 9. O Vipond et al (2021). Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumours. PNAS 118 (41): e2102166118.